Partitioned Variance Analysis of Dengue Incidence in Rio de Janeiro City: Exploring the Impact of Urban Thermal Structure and Neighborhood Clustering
DOI:
https://doi.org/10.11137/1982-3908_2025_48_58204Keywords:
Socio-economic vulnerability, Urban heat island effect, Public healthAbstract
This study investigates the spatial distribution of dengue cases in the city of Rio de Janeiro by employing neighborhood-level partitioned variance analysis, k-means clustering, and multivariate linear regression modeling. By analyzing weekly dengue case reports from the Brazilian Ministry of Health alongside meteorological data from AlertaRio mesonet stations, we reveal a significant correlation between urban thermal structures—specifically the Urban Heat Island (UHI)—and dengue incidence. Notably, increases in daily maximum and minimum temperatures precede peaks in dengue cases by up to one week, indicating a potential influence of urban heat on dengue transmission and severity. The variance analysis identifies four distinct neighborhood clusters, each accounting for a substantial portion of the total variance in dengue incidence, with a confidence level exceeding 90%. These findings highlight the intricate interplay between urban environments, local climate patterns, and the proliferation of vector-borne diseases such as dengue. Furthermore, they underscore how critical socio-economic factors, such as inadequate infrastructure and limited access to healthcare, exacerbate community vulnerability. This study emphasizes the need for integrated urban planning and public health strategies to mitigate health risks associated with UHI, ultimately enhancing resilience against vector-borne diseases in densely populated urban areas.
References
Amorim, A.C.B., Lucio, P.S., Silva, C.M.S., Rodrigues, D.T. & Brito Neto, F.A.D. 2020, ‘Regionalização e análise da tendência da precipitação do Rio Grande do Norte associados a padrões de TSM’, Revista Brasileira de Meteorologia, vol. 35, pp. 269-80.
Alexandrino, F.I.G. 2017, ‘Ilhas de calor e casos de dengue na área urbana de Taubaté-SP’, Master thesis, Universidade Estadual Paulista.
Altino, L. 2021, ‘Entenda como Irajá se tornou o bairro mais quente do Rio’, Extra, viewed 20 April 2021, <https://extra.globo.com/noticias/rio/entenda-como-iraja-se-tornou-bairro-mais-quente-do-rio-24859930.html>.
Araujo, R.V., Albertini, M.R., Costa-da-Silva, A.L., Suesdek, L., Franceschi, N.C.S., Bastos, N.M., Katz, G., Cardoso, V.A., Castro, B.C., Capurro, M.L. & Allegro, V.L.A.C. 2015, ‘São Paulo urban heat islands have a higher incidence of dengue than other urban areas’, The Brazilian Journal of Infectious Diseases, São Paulo, vol. 19, pp. 146-55.
Baracho, R.C.M. 2013, ‘Influência de variáveis meteorológicas sobre a incidência dos casos de dengue no município de Areia-PB’, Final paper, Universidade Federal da Paraíba.
Beserra, E.B., Junior, F.P.C, Santos, T.S. & Fernandes, C.R.M. 2006, ‘Biologia e exigências térmicas de Aedes aegypti (L.) (Díptera: culicidae) provenientes de quatro regiões bioclimáticas da Paraíba’, Revista Neotropical Entomology, vol. 35, no. 6, pp. 853-60.
Beserra, E.B., Fernandes, C.R., Silva, S.A.D.O., Silva, L.A.D & Santos, J.W.D. 2009, ‘Efeitos da temperatura no ciclo de vida, exigências térmicas e estimativas do número de gerações anuais de Aedes aegypti (Diptera, Culicidae)’, Iheringia, Série Zoologia, vol. 99, pp. 142-8.
Braga, I.A. & Valle, D. 2007, ‘Aedes aegypti: histórico do controle no Brasil’, Epidemiologia e Serviços de Saúde, vol. 16, no. 2, pp. 113-8.
Brasil 2009, Diretrizes Nacionais para a Prevenção e Controle de Epidemias de Dengue Ministério da Saúde, Secretaria de Vigilância em Saúde, Brasília.
Braz, A.M., Oliveira, I.J.D., Cavalcanti, L.C.D.S., Almeida, A.C.D. & Chávez, E.S. 2020, ‘Análise de agrupamento (cluster) para tipologia de paisagens’, Mercator (Fortaleza), vol. 19, e19011.
Câmara, F.P., Gomes, A.F., Santos, G.T.D. & Câmara, D.C.P. 2009, ‘Clima e epidemias de dengue no Estado do Rio de Janeiro’, Revista da Sociedade Brasileira de Medicina Tropical, vol. 42, no. 2, pp. 137-40.
Cardoso, R.D.S., Dorigon, L. P., Teixeira, D.C.F. & Amorim, M.C.D.C.T. 2017, ‘Assessment of urban heat islands in small-and mid-sized cities in Brazil’, Climate, vol. 5, 14.
Cardoso, R.D.S. & Amorim, M.C.D.C.T. 2018, ‘Urban heat island analysis using the ‘local climate zone scheme in Presidente Prudente, Brazil’, Investigaciones Geográficas, vol. 69, no. 1-6, pp. 107-18.
Consoli, A.G.B.R. & Lourenço-de-Oliveira, R. 1994, Principais mosquitos de importância sanitária no Brasil, Fiocruz, Rio de Janeiro.
Da Silva Queiroz, E.R. & de Andrade Medronho, R. 2021, ‘Spatial analysis of the incidence of Dengue, Zika and Chikungunya and socioeconomic determinants in the city of Rio de Janeiro, Brazil’, Epidemiology & Infection, vol. 149, e188.
De Almeida, P.M.P., Nobre, A.A., Câmara, D.C.P., Costa, L.M.M., Reis, I.C., Ribeiro, M.S., Dias, C.M.G., Aylló, T. & Honório, M.A. 2022, ‘Dengue, Chikungunya, and Zika: Spatial and Temporal Distribution in Rio de Janeiro State, 2015–2019’, Tropical Medicine and Infectious Disease, vol. 7, no. 7, 141.
Diez Roux, A.V. & Mair, C. 2010, ‘Neighborhoods and health’, Annals of the New York academy of sciences, vol. 1186, no. 1, pp. 125-45.
Dos Santos Gomes, A.C., Da Silva Costa, M., Coutinho, M.D.L., Do Vale, R.S., Dos Santos, M.S., Da Silva, J.T. & Fitzjarrald, D.R. 2015, ‘Análise estatística das tendências de elevação nas séries de temperatura média máxima na Amazônia Central: Estudo de caso para a região do Oeste do Pará’, Revista Brasileira de Climatologia, vol. 17, no. 7-12, pp. 82-97.
Farnesi, L.C., Martins, A.J., Valle, D. & Rezende, G.L. 2009, ‘Embryonic development of Aedes aegypti (Diptera: Culicidae): Influence of different constant temperatures’, Memórias do Instituto Oswaldo Cruz, vol. 104, pp. 124-6.
Fiocruz 2015, FGV e Fiocruz lançam sistema de alerta para monitorar dengue no Rio de Janeiro, viewed 10 January 2023, <https://www.canalsaude.fiocruz.br/noticias>.
Freitas, M.G.R., Tsouris, P., Reis, I.C., Magalhães, M.D.A.F.M., Nascimento, T.F.S.D. & Honório, N.A. 2010, ‘Dengue and land cover heterogeneity in Rio de Janeiro’, Oecologia Australis, vol. 14, no. 3, pp. 641-67.
Galea, S. & Vlahov, D. 2005, ‘Urban health: Evidence, challenges, and directions’, Annual review of public health, vol. 26, no. 1, pp. 341-65.
Gelman, A. 2005, ‘Analysis of variance – why it is more important than ever’, The Annals of Statistics, vol. 33, no. 1, pp. 1-53.
Gomes, A.F., Nobre, A.A. & Cruz, O.G. 2012, ‘Temporal analysis of the relationship between dengue and meteorological variables in the city of Rio de Janeiro, Brazil, 2001-2009’, Cadernos de Saúde Pública, vol. 28, no. 11, pp. 2189-97.
Gubler, D.J. 2002, ‘Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century’, Trends in microbiology, vol. 10, no. 2, pp. 100-3.
Heaviside, C. 2020, Urban heat Islands and their associated impacts on health, Oxford University Press, Oxford.
IBGE 2010, Instituto Brasileiro de Geogragia e Estatística, Censo demográfico 2010, viewed 02 August 2021, <https://biblioteca.ibge.gov.br/visualizacao/periodicos/93cd_2010_caracteristicas_/populacao_domicilios.pdf>.
IPCC 2022, Climate Change 2022: Impacts, Adaptation and Vulnerability – Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem & B. Rama (eds), Cambridge University Press, Cambridge/New York.
Johansson, M.A., Cummings, D.A. & Glass, G.E. 2009, ‘Multiyear climate variability and dengue – El Nino southern oscillation, weather, and dengue incidence in Puerto Rico, Mexico, and Thailand: A longitudinal data analysis’, PLoS medicine, vol. 6, no. 11, e1000168.
Karam, H.A., Pereira Filho, A.J., Masson, V., Noilhan, J. & Marques Filho, E.P. 2010, ‘Formulation of a tropical town energy budget (t-TEB) scheme’, Theoretical and Applied Climatology, vol. 101, pp. 109-120.
Knoblauch, S., Li, H., Lautenbach, S., Elshiaty, Y., Rocha, A.A.D.A., Resch, B., Arifi, D., Jänisch, T., Morales, I. & Zipf, A. 2023, ‘Semi-supervised water tank detection to support vector control of emerging infectious diseases transmitted by Aedes Aegypti’, International Journal of Applied Earth Observation and Geoinformation, vol. 119, 103304.
Lemos, L.D.O., Oscar Júnior, A.C. & Assis Mendonça, F.D. 2021, ‘Urban climate maps as a public health tool for urban planning: The case of dengue fever in Rio De Janeiro/Brazil’, Urban Climate, vol. 35, 100749.
Lima-Câmara, T.N. 2016, ‘Emerging arboviruses and public health challenges in Brazil’, Revista de Saúde Pública, vol. 50, no. 36.
Lucena, A.J., Rotunno Filho, O.C., França, J.R.A., Peres, L.F. & Xavier, L.N.R. 2013, ‘Urban climate and clues of heat island events in the Metropolitan area of Rio de Janeiro’, Theoretical and Applied Climatology, vol. 111, no. 3, pp. 497-511.
Lucena, A.J., Faria Peres, L., Rotunno Filho, O.C. & França, J.R.A. 2015, ‘Estimation of the urban heat island in the Metropolitan Area of Rio de Janeiro-Brazil’, 2015 Joint Urban Remote Sensing Event (JURSE).
Lucena, A.J. & Peres, L.F. 2017, ‘Métodos em clima urbano aplicados à cidade do Rio de Janeiro (Brasil) e sua região metropolitana’, The Overarching Issues of the European Space: Society, Economy and Heritage in a Scenario, pp. 312-26.
Marques Filho, E.P., Karam, H.A., Miranda, A.G. & Franca, J.R.A. 2009, ‘Rio de Janeiro’s urban climate’, Urban Climate News – Quarterly Newsletter of the International Association of Urban Climate (IAUC), no. 32, pp. 5-9.
Mayrhuber, E.A.S., Dückers, M.L., Wallner, P., Arnberger, A., Allex, B., Wiesböck, L., Wanka, A., Kolland, F., Eder, R., Hutter, H.P. & Kutalek, R. 2018, ‘Vulnerability to heatwaves and implications for public health interventions – A scoping review’, Environmental Research, vol. 166, pp. 42-54.
Melo, V.S. & Sousa, F.A.S. 2021, ‘Análise de frequência de secas utilizando técnica de agrupamento e distribuições de probabilidades’, Engenharia Sanitaria e Ambiental, vol. 26, pp. 53-60.
Metz, J. 2006, ‘Interpretação de clusters gerados por algoritmos de clustering hierárquico’, PhD dissertation, Universidade de São Paulo.
Miagostovich, M.P., Nogueira, R.M., Cavalcanti, S., Marzochi, K.B. & Schatzmayr, H.G. 1993, ‘Dengue epidemic in the state of Rio de Janeiro, Brazil: Virological and epidemiological aspects’ Revista do Instituto de Medicina Tropical de São Paulo, vol. 35, no. 2, pp. 149-54.
Monteiro, F.F., Gonçalves, W.A., Andrade, L.D.M.B., Villavicencio, L.M.M. & Dos Santos, C.M. 2021, ‘Assessment of Urban Heat Islands in Brazil based on MODIS remote sensing data’, Urban Climate, vol. 35, 100726.
Montgomery, D.C. 2017, Design and analysis of experiments, John Wiley & Sons, Hoboken.
Morais Júnior, R.R. 2015, ‘Estudo do desempenho da soldagem por eletrodo revestido em diferentes posições por meio de análise de variância’, Final paper, Universidade Federal do Pampa.
Mordecai, E.A., Cohen, J.M., Evans, M.V., Gudapati, P., Johnson, L.R., Lippi, C.A., Miazgowicz, K., Murdock, C.C., Rohr, J.R., Ryan, S.J. & Savage, V. 2017, ‘Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models’, PLoS Neglected Tropical Diseases, vol. 11, no. 4, e0005568.
Oke, T.R., Mills, G., Christen, A. & Voogt, J.A. 2017, Urban climates, Cambridge University Press, Cambridge.
Oliveira, R.F. 2019, ‘O papel do clima na ocorrência da Chikungunya, Dengue e Zika entre 2007 e 2017 nos bairros de Copacabana, Guaratiba, Jardim Botânico e Santa Cruz da cidade do Rio de Janeiro’, Masters thesis, Universidade do Estado do Rio de Janeiro.
Patz, J.A., Campbell-Lendrum, D., Holloway, T. & Foley, J.A. 2005, ‘Impact of regional climate change on human health’, Nature, vol. 438, 7066, pp. 310-7.
PBMC 2022, Rio registra terceira maior temperatura em 100 anos, diz Climatempo, viewed 10 April 2023, <http://pbmc.coppe.ufrj.br/index.php/en/news/>.
Pereira, M.A.F, Kobiyama, M. & Castro, N.M.R. 2014, ‘Análise de variâncias pluviométricas na bacia hidrográfica do rio Taboão-RS’, Revista Brasileira de Meteorologia, vol. 29, pp. 409-19.
Rabe-Hesketh, S. & Skrondal, A. 2008, Multilevel and longitudinal modeling using Stata, STATA press, College Station.
Rio de Janeiro 2011, Municipal Decree No. 34377/2011, of August 31, 2011 – Declares a state of alert against dengue, establishes measures for prevention and control of transmission, and outlines primary healthcare protocols for dengue cases in the City of Rio de Janeiro, along with additional provisions, Brazil.
Rodrigues, N.C.P., Daumas, R.P., de Almeida, A.S., Santos, R.S., Koster, I., Rodrigues, P.P., Gomes, M.S., Macedo, A.S., Gerardi, A. & Leite, I.S. 2018, ‘Risk factors for arbovirus infections in a low-income community of Rio de Janeiro, Brazil,’, PloS One, vol. 13, no. 6, e0198357.
Santana, L.V.R. & Da Silva, A.S.A. 2019, ‘Análise de agrupamento da velocidade do vento no Nordeste do Brasil’, Sigmae, vol. 8, no. 2, pp. 481-9.
Santos, J.P.C., Honório, N.A., Barcellos, C. & Nobre, A.A. 2020, ‘A Perspective on Inhabited Urban Space: Land Use and Occupation, Heat Islands, and Precarious Urbanization as Determinants of Territorial Receptivity to Dengue in the City of Rio De Janeiro’, International Journal of Environmental Research and Public Health, vol. 17, no. 18, 6537.
Santos, S.A.F., Karam, H.A., José, A., Rojas, J.L.F., Suazo, J.M.A., Vásquez, I.L. & Peña, C.A.S. 2022, ‘Dengue Climate Variability in Rio de Janeiro City with Cross-Wavelet Transform’, Journal of Environmental Protection, vol. 13, no. 3, pp. 261-76.
Searle, S.R., Casella, G. & McCulloch, C.E. 2009, Variance components, John Wiley & Sons, Hoboken.
Silva, M.T., Alcântara, C.R., Souza, E.P.D., Olinda, R.A.D. & Gonçalves, W.A. 2017, ‘Influência da temperatura da superfície do mar na ocorrência de linhas de instabilidade na costa Norte e Nordeste do Brasil’, Revista Brasileira de Meteorologia, vol. 32, pp. 260-8.
Silva, A.F.A. & Costa, V.A.F. 2020, ‘Caracterização espacial de secas meteorológicas e hidrológicas na porção mineira da bacia do São Francisco’, III Simpósio da Bacia Hidrográfica do Rio São Francisco, Belo Horizonte-MG, Brasil.
Silva, E.M.D.S., Correia, W.L.F., Oliveira, J.F.D., Barros, H.G., Costa, M.D.S., Gois, G.D. & Falcão, N.A.D.M. 2021, ‘Espaço-temporalidade dos focos de calor na região metropolitana de Maceió’, Revista Brasileira de Meteorologia, vol. 35, pp. 1029-43.
Sutherst, R.W. 2004, ‘Global change and human vulnerability to vector-borne diseases’, Clinical microbiology reviews, vol. 17, no. 1, pp. 136-73.
Xavier, D.R., Magalhães, M.D.A.F.M., Gracie, R., Reis, I.C.D., Matos, V.P.D. & Barcellos, C. 2017, ‘Difusão espaço-tempo do dengue no Município do Rio de Janeiro, Brasil, no período de 2000-2013’, Cadernos de Saúde Pública, vol. 33, no. 2, e00186615.
Wang, C. & Chang, H.T. 2020, ‘Hotspots, Heat Vulnerability and Urban Heat Islands: An Interdisciplinary Review of Research Methodologies’, Canadian Journal of Remote Sensing, vol. 46, no. 5, pp. 532-51.
Wilks, D. 2019, Statistical Methods in the Atmospheric Sciences, 4th edn, Elsevier, Amsterdam.
WMO 2009, Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control, World Health Organization.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Anuário do Instituto de Geociências

This work is licensed under a Creative Commons Attribution 4.0 International License.
This journal is licensed under a Creative Commons — Attribution 4.0 International — CC BY 4.0, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.