Accuracy of High Resolution Digital Cartographic Products with Elevation Control Points
DOI:
https://doi.org/10.11137/1982-3908_2025_48_59100Keywords:
UAV, GCP, PEC-PCDAbstract
The use of Unmanned aerial vehicles (UAVs) as a tool for image acquisition has been applied in several fields, some applications require cartographic products with high accuracy. With this comes the need for planning the acquisition of images and distribution of control points (GCP) so that digital products meet the required level of accuracy. The aim of this work was to investigate whether the quantity of control points as well as their distribution in different altitude planes in elevated ground can improve the accuracy of the generated cartographic products. RGB images captured by an onboard camera with a resolution of 20 MP were used. Images were captured by a multirotor UAV with an overlap of 80% (front and side) and estimated GSD of 0.017 m. The surveyed area of 5.5 ha overflown area had 31 targets surveyed with GNSS RTK, 21 defined as checkpoints (CP) and 12 as ground control points (GCP), which were used in image processing to generate orthomosaic. We evaluated the accuracy of the generated products based on the PEC-PCD. The results showed that when using only 2 GCPs the altimetric errors are high, being the single configuration that did not fit the PEC-PCD scale 1: 1,000 class A. With 5 GCPs we obtained the best RMSE in altimetry (0.026 m). With 6 GCPs we obtained the best RMSE in planimetry (0.046 m). Altimetry is the most sensitive aspect in generating cartographic products, and the use of GCPs in elevation improves altimetric accuracy.
References
Barbosa, L.S., de Souza, L.M., da Cunha, M.J.P. & dos Santos, A.D.P. 2021, 'Análise comparativa das normas de controle de qualidade posicional de produtos cartográficos do Brasil, do INCRA e da ASPRS', Revista Brasileira de Cartografia, vol. 73, no. 3, 2021, DOI:10.1493/rbcv73n3-59581.
Batistoti, J., Marcato Junior, J., Ítavo, L., Matsubara, E., Gomes, E., Oliveira, B. & Dias, A. 2019, 'Estimating pasture biomass and canopy height in Brazilian Savanna using UAV photogrammetry', Remote Sensing, vol. 11, no. 20, 2447, DOI:10.33990/rs11202447.
Calou, V.B.C., Teixeira, A.D.S., Silva, J.A.D., Oliveira, M.R.R.D. & Nascimento, Í.V.D. 2021, 'Statistical process control and mapping accuracy standards applied to aerial surveys', Revista Ciência Agronômica, vol. 52, no. 1, e20207212, DOI:10.5935/1806-6690.20210006.
DSG – Diretoria de Serviço Geográfico 2016, Normas da Especificação Técnica para a Aquisição de Dados Geoespaciais Vetoriais de Defesa da Força Terrestre - ET-ADGV, 2nd edn, Ministério da Defesa, viewed 22 October 2021, <https://docs.ufpr.br/~deni_ern/CD2020/A1/ET_ADGV_2a_Edicao_2016_Textual_Anexo_A_Assinado.pdf>.
Ferrer-González, E., Agüera-Vega, F., Carvajal-Ramírez, F. & Martínez-Carricondo, P. 2020, 'UAV photogrammetry accuracy assessment for corridor mapping based on the number and distribution of ground control points', Remote Sensing, vol. 12 no. 15, 2447, DOI:10.3390/rs12152447.
Garcia, M.V.Y. & Oliveira, H.C.D. 2021, 'The influence of flight configuration, camera calibration, and ground control points for digital terrain model and orthomosaic generation using unmanned aerial vehicles imagery', Boletim de Ciências Geodésicas, vol. 27, no. 2, pp. 1-18, DOI:10.1590/s1982-21702021000200015.
Han, X., Thomasson, J.A., Wang, T. & Swaminathan, V. 2020, 'Autonomous mobile ground control point improves accuracy of agricultural remote sensing through collaboration with UAV', Inventions, vol. 5, no. 1, 12, DOI:10.3390/inventions5010012.
Hastaoglu, K.O., Kapicioglu, H.S., Gül, Y. & Poyraz, F. 2023, 'Investigation of the effect of height difference and geometry of GCP on position accuracy of point cloud in UAV photogrammetry', Survey Review, vol. 55, no. 391, pp. 325-37, DOI:10.1080/00396265.2022.2097998.
Le Van, C.A.N.H., Cuong, C.X., Nguyen, Q.U.O.C., Anh, T.T. & Xuan-Nam, B.U.I. 2020, 'Experimental Investigation on the Performance of DJI Phantom 4 RTK in the PPK Mode for 3D Mapping Open-Pit Mines', Inżynieria Mineralna, vol. 1, no. 2, pp. 65-74, DOI:10.29227/IM-2020-02-10.
Lewińska, P., Głowacki, O., Moskalik, M. & Smith, W.A. 2021, 'Evaluation of structure-from-motion for analysis of small-scale glacier dynamics', Measurement, vol. 168, 108327, DOI:10.1016/j.measurement.2020.108327.
Liu, X., Lian, X., Yang, W., Wang, F., Han, Y. & Zhang, Y. 2022, 'Accuracy assessment of a UAV direct georeferencing method and impact of the configuration of ground control points', Drones, vol. 6, no. 2, 30, DOI:10.3390/drones6020030.
Meinen, B.U. & Robinson, D.T. 2020, 'Where did the soil go? Quantifying one year of soil erosion on a steep tile-drained agricultural field', Science of The Total Environment, vol. 729, 138320, DOI:10.1016/j.scitotenv.2020.138320.
Osco, L.P., de Arruda, M.D.S., Gonçalves, D.N., Dias, A., Batistoti, J., de Souza, M. & Gonçalves, W.N. 2021, 'A CNN approach to simultaneously count plants and detect plantation-rows from UAV imagery', ISPRS Journal of Photogrammetry and Remote Sensing, vol. 174, pp. 1-17, DOI:10.1016/j.isprsjprs.2021.01.024.
Padró, J.-C., Muñoz, F.-J., Planas, J. & Pons, X. 2019, 'Comparison of four UAV georeferencing methods for environmental monitoring purposes focusing on the combined use with airborne and satellite remote sensing platforms', International Journal of Applied Earth Observation and Geoinformation, vol. 75, pp. 130-40, DOI:10.1016/j.jag.2018.10.018.
PIX4D 2018, Pix4Dmapper, Versão 4.1.25, Pix4D.
QGIS Development Team 2019, QGIS. Versão 2.18.24, QGIS Development Team, Las Palmas.
Revuelto, J., López‐Moreno, J.I. & Alonso‐González, E. 2021, 'Light and shadow in mapping alpine snowpack with unmanned aerial vehicles in the absence of ground control points', Water Resources Research, vol. 57, no. 6, e2020WR028980, DOI:10.1029/2020WR028980.
Siqueira, H.L., Marcato Junior, J., Matsubara, E.T., Colares, R.A. & Santos, F.M. 2020, 'Acurácia de Produtos Fotogramétricos Gerados com Aeronave Remotamente Pilotada em Relevo Acidentado', Revista Brasileira de Cartografia, vol. 72, no. 3, pp. 490-500, DOI:10.14393/rbcv72n3-48413.
TRIMBLE 2013, Trimble R8, R6 and R4 User Guide Version 4.80 Revision A, viewed 22 October 2022, <https://www.trimble.com/support_trl.aspx?Nav=Collection-65944&pt=Trimble%20R4>.
Yu, J.J., Kim, D.W., Lee, E.J. & Son, S.W. 2020, 'Determining the optimal number of ground control points for varying study sites through accuracy evaluation of unmanned aerial system-based 3D point clouds and digital surface models', Drones, vol. 4, no. 3, 49, DOI:10.3390/drones4030049.
Zanetti, J., Gripp Junior, J. & Dos Santos, A.P. 2017, 'Influência do número e distribuição de pontos de controle em ortofotos geradas a partir de um levantamento por VANT', Revista Brasileira de Cartografia, vol. 69, no. 2, pp. 263-77, DOI:10.14393/rbcv69n2-44016.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Anuário do Instituto de Geociências

This work is licensed under a Creative Commons Attribution 4.0 International License.
This journal is licensed under a Creative Commons — Attribution 4.0 International — CC BY 4.0, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.