Mapping Potential Targets for Gold Mineralization: a Methodological Approach Based on Score Balances of Soil geochemical Data in the Amapari area, Amapá State, Brazil
DOI:
https://doi.org/10.11137/1982-3908_2025_48_63376Keywords:
Compositional data, Potential gold targetsAbstract
Geochemical exploration in deeply weathered tropical terrains is often hampered by a strong modification of the primary geochemical signals on the surface, making it difficult to locate potential targets for gold mineralization relying on geochemical assays for Au in soil samples. This problem is particularly relevant in rain forest equatorial regions such as the Amapari area, Amapá state, Brazil, where the gold ore is hosted in a hydrothermally altered banded iron formation and where the prevailing humid tropical conditions contributed to developing regolith profiles that may be several tens of meters thick, topped by lateritic crusts or highly leached colluvial soils. In this study, we apply an innovative methodology based on score balances and data mining. The data set is composed of a vast soil geochemical survey conducted in the region. A training step based on mineralized and non-mineralized samples is essential to select the best variables to be adopted in a balanced formula whose score will be calculated over a validation area. The proposed method was successfully applied to highlight a mineralized trend in the Amapari region, which was not previously detected considering only Au grade or any other potential pathfinder metal alone. The method may be used in other regions and even for other valuable metals.
References
Aitchison, J. 1986, The statistical analysis of compositional data, Chapman & Hall, London.
Balaram, V. & Sawant, S.S. 2022, ‘Indicator Minerals, Pathfinder Elements, and Portable Analytical Instruments in Mineral Exploration Studies’, Minerals, vol. 12, no. 4, 394.
Beadell Resources Ltd 2017, Latest Operation news, viewed 10 December 2016, <https://doi.org/18.208.20.133/pt-br/operacoes/reservas-e-recursos/>.
Boente, C., Baragaño, D., García-González, N., Forján, C.R., Colina, A. & Gallego, J.L. 2022, ‘A holistic methodology to study geochemical and geomorphological control of the distribution of potentially toxic elements in soil’, Catena, vol. 208, 105730.
Boogaart, K.G. & Tolosana-Delgado, R. 2013, Analyzing compositional data with R, Springer, Hieldelberg.
Boogaart, K.G. & Tolosana-Delgado, R. 2006, ‘Compositional data analysis with 'R' and the package 'compositions'’, in A. Buccianti, G. Mateus-Figueras & G. Pawlowsky-Glahn (eds), Compositional Data Analysis in the Geosciences: From Theory to Practice, Geological Society, London.
Braga, L.P.V. & Braga, J. 2020, ‘Mapping gold pathfinder metal ratios in Northern Nevada, USA: A compositional analysis approach’, Journal of Geochemical Exploration, vol. 219, 106616.
Butt, C.R.M. & Zeegers, H. 1992, Regolith Exploration Geochemistry in Tropical and Subtropical Terrains. Handbook of Exploration Geochemistry: 4. Elsevier, Amsterdam.
Chayes, F. 1960, ‘On correlation between variables of constant sum’, Journal of Geophysical Research, vol. 65, no. 12, pp. 4185-93.
Clifton, H.E., Hunter, R.E., Swanson, F.J. & Phillips, R.L. 1969, Sample size and meaningful gold analysis. U.S. Geol. Survey Professional Paper 625-C, United States Government Printing Office, Washington.
Costa, M.L., Angelica, R.S. & Fonseca, L.R. 1996, ‘Geochemical Exploration For Gold In Deep Weathered Lateritized Gossans In The Amazon Region-Brazil: A case History of The Igarapé Bahia Deposit’, Geochimica Brasiliensis (Rio de Janeiro), vol. 10, no. 1, pp. 13-26.
Delmater, R. & Hancock, M. 2004, Data Mining Explained, Digital Press, Newton.
Egozcue, J.J. & Pawlowsky-Glahn, V. 2005, ‘Group of parts and their balances in compositional data analysis’, Mathematical Geology, vol. 37, no. 7, pp. 795-828.
Environmental Systems Research Institute – ESRI 2019, ArcGis Desktop: Release 10.8, Redlands, California.
Freyssinet, P. 1993, ‘Gold dispersion related to ferricrete pedogenesis in South Mali application to geochemical exploration’, Chronique de la Recherche Minière, pp. 24-40.
Horikava, E.H. 2008, ‘Geoquímica de solo e geologia da região do depósito de ouro do Amapari – AP’, Master's thesis, Universidade Federal de Minas Gerais.
Kürzl, M. 1988, ‘Exploratory data analysis: Recent advances for the interpretation of 684 geochemical data’, Journal of Geochemical Exploration, vol. 30, pp. 309-22.
Lima, M.I.C., Montalvão, R M.G., Isslcr, R.S., Oliveira, A., Basei, M.A.S., Araújo, J.F.V. & Silva, G.G. 1974, Levantamento de Recursos Naturais, Projeto RADAM, Departamento Nacional da Produção Mineral, Rio de Janeiro.
LÓPEZ, C. P.; GONZÁLEZ, D. S. Data mining: soluciones con Enterpise Miner. Paracuellos de Jarama: Ra-Ma, 2006.
Martín-Fernández, J.A, Hron, K., Templ, M., Filzmoser, P. & Palarea-Albaladejo, J. 2015, ‘Bayesian-multiplicative treatment of count zeros in compositional data sets’, Statistical Modelling, vol. 15, no. 2, pp. 134-58.
Palarea-Albaladejo, J. & Martin-Fernandez, J.A. 2015, ‘zCompositions – R package for multivariate imputation of left-censored data under a compositional approach’, Chemometrics and Intelligence Laboratory Systems, vol. 143, pp. 85-96.
Pawlowsky-Glahn, V. & Egozcue, J.J. 2006, ‘Compositional data and their analysis: An introduction’, Geological Society London Special Publications Home, vol. 264, no. 1, pp. 1-10.
Pawlowsky-Glahn, V. & Egozcue, J. 2001, ‘Geometric approach to statistical analysis on the simplex’, Stochastic Environmental Research and Risk Assessment, vol. 15, pp. 384-98.
Pawlowsky-Glahn, V. & Olea, R.A. 2004, Geostatistical analysis of compositional data. Oxford University Press, New York.
Pawlowsky-Glahn, V., Egozcue, J.J. & Tolosana-Delgado, R. 2015, Modeling and analysis of compositional data, Wiley, Chichester.
Pawlowsky-Glahn, V. 1984, ‘On spurious spatial covariance between variables of constant sum’, Science de la terre: serie Informatique, vol. 21, pp. 107-13.
Porto, C.G. 2007, Caracterização do regolito para a exploração mineral em terrenos lateríticos na Amazônia – Projeto Latam, Relatório final de pesquisa, Universidade Federal do Rio de Janeiro.
Porto, C.G. 2016, ‘Geochemical exploration challenges in the regolith dominated Igarapé Bahia gold deposit, Carajás, Brazil’, Ore Geology Reviews, vol. 73, pp. 432-50.
Porto, C.G. & Hale, M. 1995, ‘Gold redistribution in the stone line lateritic profile of the Posse Deposit, central Brazil’, Economic Geology, vol. 90, no. 2, pp. 308-21.
R Core Team 2022, R: A language and environment for statistical computing: Release 4.2.1. R Foundation for Statistical Computing, viewed 27 April 2023, <https://www.R-project.org>.
Rivera-Pinto, J., Egozcue, J.J., Pawlowsky-Glahn, V., Paredes, R., Noguera-Julian, M. & Calle, M.L. 2018, ‘Balances: A New Perspective for Microbiome Analysis’, mSystems, vol. 3, no. 4.
Sahoo, P.K., Dall’Agnol, R., Salomao, G.N., Junior, J.S.F., Silva, M.S., Filho, P.W.M.S., Costa, M.L., Angelica, R.S., Filho, C.A.M.C., Costa, M.F., Guilherme, L.R.G. & Siqueira, J.O. 2020, ‘Regional-scale mapping for determining geochemical background values in soils of the Itacaiúnas River Basin, Brazil: The use of compositional data analysis (CoDA)’, Geoderma, vol. 376, 114504.
Scarpelli, W. & Horikava, E.H. 2017, ‘Gold, iron and manganese in central Amapá, Brazil’, Brazilian Journal of Geology, vol. 47, no. 4, pp. 703-21.
Tassinari, C.C.G. & Macambira, M.J.B. 1999, ‘Geochronological provinces of the Amazonian Craton’, Episodes, vol. 22, no. 3, pp. 174-82.
Tolosana-Delgado, R., van den Boogart, K. & Pawlowsky-Glahn, V. 2009, ‘Estimating and modeling variograms of compositional data with occasional missing variables in R’, StatGIS´09, Geoinformatics for environmental surveillance Workshop, Greece.
Winterburn, P.J., Noble, R. & Lawie, D. 2020, ‘Advances in exploration geochemistry, 2007 to 2017 and beyond’, Geochemistry-exploration Environment Analysis, vol. 20, no. 2, pp. 157-66.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
This journal is licensed under a Creative Commons — Attribution 4.0 International — CC BY 4.0, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.