The Use Remotely Piloted Aircraft in Counting Agricultural and Forestry Plants: a Systematic Review
DOI:
https://doi.org/10.11137/1982-3908_2025_48_64062Keywords:
RPAS, Machine learning, AlgorithmsAbstract
In recent years, plant counting using data collected by sensors embedded in remotely piloted aircraft systems (RPAS), combined with machine learning algorithms, has become popular in the agroforestry sector, especially in crop planning, crop production estimation, among other applications. This study aimed to perform a systematic review of the literature on plant counting in the agricultural and forestry sector that uses data from sensors embedded in RPAS. We sought to identify the principal bibliometric indicators of scientific production and, through content analysis, the main characteristics and trends of the studies. A total of 33 scientific articles obtained on the Scopus and Web of Science platforms were used. Then, a content qualitative analysis of each article was conducted to identify the main thematic categories: agricultural and forest species, platform and sensors, software, and algorithm. There was an increase in scientific publications as of 2017. The USA presented the higher number of researches performed, with eight publications. There was a significant presence of RGB (Red, Green and Blue) sensors followed by multispectral. The algorithms Convoluctional Neural Network (CNN), Structure from Motion (SfM), and K-means stood out for the recurrence of use, either singularly or associated. Studies with this purpose drive new research development, where this technology utilization is revealed as a potential instrument to understand the usage trends, subsidize and encourage the information acquisition, promoting improvements and progress for research in the agroforestry scope.
References
Albuquerque, R.W., Costa, M.O., Ferreira, M.E., Carrero, G.C. & Grohmann, C.H. 2020, ‘Remotely piloted aircraft imagery for automatic tree counting in forest restoration areas: a case study in the Amazon’, Journal of Unmanned Vehicle Systems, vol. 8, no. 3, pp. 207-223, DOI:10.1139/juvs-2019-0024@cjfrjuvs-uav.issue1.
Ampatzidis, Y. & Partel, V. 2019, ‘UAV-based high throughput phenotyping in citrus utilizing multispectral imaging and artificial intelligence’, Remote Sensing, vol. 11, no. 4, pp. 410, DOI:10.3390/rs11040410.
Aparna, P., Hebbar, R., Harshita, M.P., Sounder, H., Nandkishore, K. & Vinod, P.V. 2018, ‘CNN based technique for automatic tree counting using very high resolution data’, 2018 International conference on design innovations for 3Cs compute communicate control (ICDI3C), pp. 127-129.
Bai, Y., Nie, C., Wang, H., Cheng, M., Liu, S., Yu, X. & Jin, X. 2022, ‘A fast and robust method for plant count in sunflower and maize at different seedling stages using high-resolution UAV RGB imagery’, Precision Agriculture, vol. 23, no. 5, pp. 1720-1742, DOI:10.1007/s11119-022-09907-1.
Baltsavias, E., Gruen, A., Eisenbeiss, H., Zhang, L. & Waser, L.T. 2008, ‘High‐quality image matching and automated generation of 3D tree models’, International Journal of Remote Sensing, vol. 29, no. 5, pp. 1243-1259, DOI:10.1080/01431160701736513.
Barros, Q.S., Brito, L. R., Carvalho, H. P., Pinheiro, R.M., Ferreira, E. J. L. & Silva, V.E.P. 2024, ‘Utilização de drones estudos florestais: uma revisão sistemática’, Diversitas Journal, vol. 9, no. 3, DOI:10.48017/dj.v9i3.2887.
Berni, J.A., Zarco-Tejada, P.J., Suárez, L. & Fereres, E. 2009, ‘Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle’, Transactions on geoscience and Remote Sensing, vol. 47, no. 3, pp. 722-738, DOI:10.1109/TGRS.2008.2010457.
Birdal, A.C., Avdan, U. & Türk, T. 2017, ‘Estimating tree heights with images from an unmanned aerial vehicle’, Geomatics, Natural Hazards and Risk, vol. 8, no. 2, pp. 1144-1156, DOI:10.1080/19475705.2017.1300608.
Bourscheidt, V. 2019, ‘Uso de Vants para estudos ambientais em áreas urbanas: aplicações atuais e perspectivas’, in G. Prudkin & F.M. Breunig (org), Drones e Ciência: teoria e aplicações metodológicas-volume I, FACOS-UFSM, Santa Maria, pp. 111-124.
Chabot, D. 2018, ‘Trends in drone research and applications as the Journal of Unmanned Vehicle Systems turns five’, Journal of Unmanned Vehicle Systems, vol. 6, no. 1, DOI:10.1139/juvs-2018-0005.
Chen, S.W., Shivakumar, S.S., Dcunha, S., Das, J., Okon, E., Qu, C., Taylo, C. & Kumar, V. 2017, ‘Counting apples and oranges with deep learning: A data-driven approach’, IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 781-788, DOI:10.1109/LRA.2017.2651944.
Djerriri, K., Ghabi, M., Karoui, M.S. & Adjoudj, R. 2018, ‘Palm trees counting in remote sensing imagery using regression convolutional neural network’, IGARSS 2018, IEEE International Geoscience and Remote Sensing Symposium, pp. 2627-2630. DOI:10.1109/IGARSS.2018.8519188.
Ehsani, R. & Maja, J.M. 2013, ‘The rise of small UAVs in precision agriculture’, Resource Magazine, vol. 20, no. 4, pp. 18-19.
Embrapa. Empresa Brasileira de Pesquisa Agropecuária. 2019, Cientistas usam drones para fazer inventário de florestas e estimar volume de madeira, viewed 29 April 2021, <https://www.embrapa.br/busca-de-noticias/-/noticia/46891736/cientistas-usam-drones-para-fazer-inventario-de-florestas-e-estimar-volume-de-madeira>.
Eugenio, F.C. & Zago, H. B. 2019, O livro dos drones: um guia completo para entender todas as partes e funcionamento, CAUFES, Alegre, Espírito Santos.
Eugenio, F.C., Schons, C.T., Mallmann, C.L., Schuh, M.S., Fernandes, P. & Badin, T.L. 2020, ‘Remotely piloted aircraft systems and forests: a global state of the art and future challenges’, Canadian journal of forest research, vol. 50, no. 8, pp. 705-716, DOI:10.1139/cjfr-2019-0375@cjfrjuvs-uav.issue1.
Fantinel, R.A. 2024, ‘Inteligência artificial na análise de dados de um plantio comercial de Eucalyptus saligna Smith por meio de imagens multiespectrais. PhD. Thesis, Universidade Federal de Santa Maria.
Farjon, A. 2018, ‘The Kew review: conifers of the world’, Kew Bulletin, vol. 73, pp. 1-16.
Favarin, J.A.S., Pereira, R.S., Pegoraro, A.J. & Lippert, D.B. 2013, ‘Obtenção de fotografias aéreas de um povoamento de Pinus taeda L. com o VANT Microdrone MD4-1000’, Simpósio Brasileiro de Sensoriamento Remoto, vol. 16, pp. 9340-9346.
Favorskaya, M.N. & Jain, L.C. 2017, ‘Handbook on advances in remote sensing and geographic information systems’, Springer, DOI:10.1007/978-3-319-52308-8.
Fritz, A., Kattenborn, T. & Koch, B. 2013, ‘UAV-based photogrammetric point clouds–tree stem mapping in open stands in comparison to terrestrial laser scanner point clouds’, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 40, pp. 141-146.
Fuentes-Peñailillo, F., Ortega-Farías, S., Fuente-Sáiz, D. & Rivera, M. 2019, ‘Digital count of sunflower plants at emergence from very low altitude using UAV images’, 2019 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, pp. 1-5.
García-Martínez, H., Flores-Magdaleno, H., Khalil-Gardezi, A., Ascencio-Hernández, R., Tijerina-Chávez, L., Vázquez-Peña, M.A. & Mancilla-Villa, O.R. 2020, ‘Digital count of corn plants using images taken by unmanned aerial vehicles and cross correlation of templates’, Agronomy, vol. 10, no. 4, pp. 469, DOI:10.3390/agronomy10040469.
Goldbergs, G., Maier, S.W., Levick, S.R. & Edwards, A. 2018, ‘Efficiency of individual tree detection approaches based on light-weight and low-cost UAS imagery in Australian Savannas’, Remote Sensing, vol. 10, no. 2, pp. 161, DOI:10.3390/rs10020161.
Gómez-Candón, D., Castro, A.I. & López-Granados, F. 2014, ‘Assessing the accuracy of mosaics from unmanned aerial vehicle (UAV) imagery for precision agriculture purposes in wheat’, Precision Agriculture, vol. 15, pp. 44-56.
Guerra-Hernandez, J.G., Ferreiro, E.G., Sarmento, A., Silva, J., Nunes, A., Correia, A.C. & Varela, R.A.D. 2016, ‘Using high resolution UAV imagery to estimate tree variables in Pinus pinea plantation in Portugal’, Forest systems, vol. 25, no. 2, pp. 16.
Gülci, S. 2019, ‘The determination of some stand parameters using SfM-based spatial 3D point cloud in forestry studies: an analysis of data production in pure coniferous young forest stands’, Environmental monitoring and assessment, vol. 191, no. 8, pp. 495.
Hassaan, O., Nasir, A.K., Roth, H. & Khan, M.F. 2016, ‘Precision forestry: trees counting in urban areas using visible imagery based on an unmanned aerial vehicle’, IFAC-PapersOnLine, vol. 49, no. 16, pp. 16-21.
Jesus, L.C. & Peres, W.L.R. 2023, ‘Os impactos da utilização de drones na agricultura’, Revista Contemporânea, vol. 3, no. 11, pp. 22713-22736, DOI:10.56083/RCV3N11-137.
Jurado, J.M., Ortega, L., Cubillas, J.J. & Feito, F.R. 2020, ‘Multispectral mapping on 3D models and multi-temporal monitoring for individual characterization of olive trees’, Remote Sensing, vol. 12, no. 7, pp. 1106, DOI:10.3390/rs12071106.
Kalantar, B., Idrees, M.O., Mansor, S. & Halin, A.A. 2017, ‘Smart counting–oil palm tree inventory with UAVOL’, Coordinates, vol. 13, no. 5, pp. 17-22.
Kattenborn, T., Lopatin, J., Förster, M., Braun, A.C. & Fassnacht, F.E. 2019, ‘UAV data as alternative to field sampling to map woody invasive species based on combined Sentinel-1 and Sentinel-2 data’, Remote sensing of environment, vol. 227, pp. 61-73, DOI:10.1016/j.rse.2019.03.025.
Kestur, R., Angural, A., Bashir, B., Omkar, S.N., Anand, G. & Meenavathi, M.B. 2018, ‘Tree crown detection, delineation and counting in uav remote sensed images: A neural network based spectral–spatial method’, Journal of the Indian Society of Remote Sensing, vol. 46, pp. 991-1004.
Kitano, B.T., Mendes, C.C., Geus, A.R., Oliveira, H.C. & Souza, J.R. 2019, ‘Corn plant counting using deep learning and UAV images’, IEEE Geoscience and Remote Sensing Letters, DOI:10.1109/LGRS.2019.2930549.
Lecun, Y. 2015, LeNet-5, convolutional neural networks, vol. 20, no. 5, pp. 14, viewed 29 April 2021, < http://yann.lecun.com/exdb/lenet>.
Lecun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W. & Jackel, L.D. 1989, ‘Backpropagation applied to handwritten zip code recognition’, Neural Computation, vol. 1, no. 4, pp. 541-551, DOI:10.1162/neco.1989.1.4.541.
Lin, Y., Jiang, M., Yao, Y., Zhang, L. & Lin, J. 2015, ‘Use of UAV oblique imaging for the detection of individual trees in residential environments’, Urban forestry & urban greening, vol. 14, no. 2, pp. 404-412, DOI:10.1016/j.ufug.2015.03.003.
Liu, X., Ghazali, K.H., Han, F. & Mohamed, I.I. 2021, ‘Automatic detection of oil palm tree from UAV images based on the deep learning method’, Applied Artificial Intelligence, vol. 35, no. 1, pp. 13-24, DOI:10.1080/08839514.2020.1831226.
Madec, S., Jin, X., Lu, H., Solan, B., Liu, S., Duyme, F., Heritier, E. & Baret, F. 2019, ‘Ear density estimation from high resolution RGB imagery using deep learning technique’, Agricultural and forest meteorology, vol. 264, pp. 225-234, DOI:10.1016/j.agrformet.2018.10.013.
Mohan, M., Silva, C.A., Klauberg, C., Jat, P., Catts, G., Cardil, A. & Dia, M. 2017, ‘Individual tree detection from unmanned aerial vehicle (UAV) derived canopy height model in an open canopy mixed conifer forest’, Forests, vol. 8, no. 9, pp. 340, DOI:10.3390/f8090340.
Moutinho, O.F.G. 2015, ‘Evaluation of photogrammetric Solutions for RPAS: Commercial VS Open source’, Master Dissertation, Universidade do Porto.
Neupane, B., Horanont, T. & Hung, N.D. 2019, ‘Deep learning based banana plant detection and counting using high-resolution red-green-blue (RGB) images collected from unmanned aerial vehicle (UAV)’, PloS one, vol. 14, no. 10, e0223906, DOI:10.1371/journal.pone.0223906.
O’shea, K. & Nash, R. 2015, ‘An introduction to convolutional neural networks’, ArXiv, 1511.08458, DOI:10.48550/arXiv.1511.08458.
Oh, S., Chang, A., Ashapure, A., Jung, J., Dube, N., Maeda, M. & Landivar, J. 2020, ‘Plant counting of cotton from UAS imagery using deep learning-based object detection framework’, Remote Sensing, vol. 12, no. 18, pp. 2981, DOI:10.3390/rs12182981.
Olsen, P.A., Ramamurthy, K.N., Ribera, J., Chen, Y., Thompson, A.M., Luss, R. 2018, ‘Detecting and counting panicles in sorghum images’, IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA), pp. 400-409, DOI:10.1109/DSAA.2018.00052.
Osco, L.P., Arruda, M.S., Junior, J.M., Silva, N.B., Ramos, A.P.M., Moryia, É.A.S., Imai, N.N., Pereira, D.R., Creste, J.E., Matsubara, E.T., Li, J. & Gonçalves, W.N. 2020, ‘A convolutional neural network approach for counting and geolocating citrus-trees in UAV multispectral imagery’, ISPRS Journal of Photogrammetry and Remote Sensing, vol. 160, pp. 97-106, DOI:10.1016/j.isprsjprs.2019.12.010.
Panagiotidis, D., Abdollahnejad, A., Surový, P. & Chiteculo, V. 2017, ‘Determining tree height and crown diameter from high-resolution UAV imagery’, International journal of remote sensing, vol. 38, no. 8-10, pp. 2392-2410, DOI:10.1080/01431161.2016.1264028.
Picos, J., Bastos, G., Míguez, D., Alonso, L. & Armesto, J. 2020, ‘Individual tree detection in a eucalyptus plantation using unmanned aerial vehicle (UAV)-LiDAR’, Remote Sensing, vol. 12, no. 5, pp. 885, DOI:10.3390/rs12050885.
Raparelli, E. & Bajocco, S. 2019, ‘A bibliometric analysis on the use of unmanned aerial vehicles in agricultural and forestry studies’, International Journal of Remote Sensing, vol. 40, no. 24, pp. 9070-9083, DOI:10.1080/01431161.2019.1569793.
Sá, N.C., Castro, P., Carvalho, S., Marchante, E., López-Núñez, F.A. & Marchante, H. 2018, ‘Mapping the flowering of an invasive plant using unmanned aerial vehicles: is there potential for biocontrol monitoring?’, Frontiers in plant science, vol. 9, pp. 293, DOI:10.3389/fpls.2018.00293.
Salamí, E., Gallardo, A., Skorobogatov, G. & Barrado, C. 2019, ‘On-the-fly olive tree counting using a UAS and cloud services’, Remote Sensing, vol. 11, no. 3, pp. 316, DOI:10.3390/rs11030316.
Sarabia, R., Aquino, A., Ponce, J.M., López, G. & Andújar, J.M. 2020, ‘Automated identification of crop tree crowns from uav multispectral imagery by means of morphological image analysis’, Remote Sensing, vol. 12, no. 5, 748, DOI:10.3390/rs12050748.
Sedona, R., Cavallaro, G., Jitsev, J., Strube, A., Riedel, M. & Benediktsson, J.A. 2019, ‘Remote sensing big data classification with high performance distributed deep learning’, Remote Sensing, vol. 11, no. 24, pp. 3056, DOI:10.3390/rs11243056.
Sheykhmousa, M., Mahdianpari, M., Ghanbari, H., Mohammadimanesh, F., Ghamisi, P. & Homayouni, S. 2020, ‘Support vector machine versus random forest for remote sensing image classification: A meta-analysis and systematic review’, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13, pp. 6308-6325, DOI:10.1109/JSTARS.2020.3026724.
Shirzadifar, A., Maharlooei, M., Bajwa, S.G., Oduor, P.G. & Nowatzki, J.F. 2020, ‘Mapping crop stand count and planting uniformity using high resolution imagery in a maize cropp’, Biosystems Engineering, vol. 200, pp. 377-390, DOI:10.1016/j.biosystemseng.2020.10.013.
Souza, C.O., Röder, C. & Almeida, R.F. 2010, ‘Características Organizacionais da Agropecuária dos Estados Unidos da América’, XV Encontro da Engenharia de Produção Agroindustrial, Campo Mourão, Paraná. pp. 1-6.
Ubbens, J., Cieslak, M., Prusinkiewicz, P. & Stavness, I. 2018, ‘The use of plant models in deep learning: an application to leaf counting in rosette plants’, Plant methods, vol. 14, pp. 1-10.
Ullman, S. 1979, ‘The interpretation of structure from motiono’, Proceedings of the Royal Society of Londono. Series B. Biological Sciences, vol. 203, no. 1153, pp. 405-426.
Valente, J., Sari, B., Kooistra, L., Kramer, H. & Mücher, S. 2020, ‘Automated crop plant counting from very high-resolution aerial imagery’, Precision Agriculture, vol. 21, pp. 1366-1384, DOI:10.1007/s11119-020-09725-3.
Vali, A., Comai, S. & Matteucci, M. 2020, ‘Deep learning for land use and land cover classification based on hyperspectral and multispectral earth observation data: A review’, Remote Sensing, vol. 12, no. 15, 2495, DOI:10.3390/rs12152495.
Varela, S., Dhodda, P.R., Hsu, W.H., Prasad, P.V.V., Assefa, Y., Peralta, N.R., Griffin, T., Sharda, A., Ferguson, A. & Ciampitti, I.A. 2018, ‘Early-season stand count determination in corn via integration of imagery from unmanned aerial systems (UAS) and supervised learning techniques’, Remote Sensing, vol. 10, no. 2, 343, DOI:10.3390/rs10020343.
Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M. J. & Reynolds, J. M. 2012, ‘Structure-from-Motion’photogrammetry: A low-cost, effective tool for geoscience applications’, Geomorphology, vol. 179, pp. 300-314, DOI:10.1016/j.geomorph.2012.08.021.
Wu, J., Yang, G., Yang, X., Xu, B., Han, L. & Zhu, Y. 2019, ‘Automatic counting of in situ rice seedlings from UAV images based on a deep fully convolutional neural network’, Remote Sensing, vol. 11, no. 6, 691, DOI:10.3390/rs11060691.
Xu, X., Li, H., Yin, F., Xi, L., Qiao, H., Ma, Z., & Ma, X. 2020, ‘Wheat ear counting using K-means clustering segmentation and convolutional neural network’, Plant Methods, vol. 16, pp. 1-13.
Zhang, L., Zhang, L. & Du, B. 2016, ‘Deep learning for remote sensing data: A technical tutorial on the state of the art’, IEEE Geoscience and remote sensing magazine, vol. 4, no. 2, pp. 22-40, DOI:10.1109/MGRS.2016.2540798.
Zou, X., Liang, A., Wu, B., Su, J., Zheng, R. & Li, J. 2019, ‘UAV-based high-throughput approach for fast growing Cunninghamia lanceolata (Lamb.) cultivar screening by machine learning’, Forests, vol. 10, no. 9, 815, DOI:10.3390/f10090815.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
This journal is licensed under a Creative Commons — Attribution 4.0 International — CC BY 4.0, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.