Poços de Caldas – Cabo Frio Alignment: a Petrochronological Review of an Unconventional Plume Model
DOI:
https://doi.org/10.11137/1982-3908_2025_48_65281Keywords:
Alkaline Province, 40Ar/39Ar dating, U-Pb datingAbstract
This work reviews the Poços de Caldas – Cabo Frio Alignment (PCCFA), one of Brazil's alkaline igneous provinces, comprising syenites, phonolites, and trachytes, as well as magmatic breccias. TAS and Harker (for major and trace elements) diagrams suggest two groups based on the silica content. From the TAS diagram, it is noted that the less evolved rocks plot mainly in the tephrite/basanite and foidite fields, while the more evolved rocks predominantly fall in the phonolite and trachyte fields. In the Harker diagrams, correlations with silica can be observed for some oxides/elements, such as TiO2, CaO, Rb, Sr, Zr, Y, and Nb. From the normalized diagrams, it is evident that the less evolved rocks exhibit low variability, indicating similar sources and petrogenetic processes. In contrast, the more evolved ones present several anomalies (Ba, Sr, Ti, Rb, Zr, and Eu), suggesting different mineral fractionations. In addition, a wide range of normalized values is observed for certain elements, such as Ba, Sr, and Pb, which may indicate distinct evolutionary processes. Sr and Nd isotopic data show show similar trends, suggesting a mixture of DMM and EMI or DMM and EMII sources for the PCCFA complexes. Two new 40Ar/39Ar ages (71.55 ± 0.49 Ma and 67.31 ± 0.78 Ma) are presented for the Tinguá and Itatiaia massifs, respectively. In addition, two new U-Pb ages (69.3 ± 2.2 Ma for Tinguá and 70.4 ± 2.6 Ma for Itatiaia) are presented along with a third U-Pb age of 65 ± 2 Ma obtained for Gatos Hill, which is the first published age for this massif. The compilation of geochronological data, along with these new ages, indicates that the decrease in ages from west to east is not regular. For example, the oldest age (Itatiaia – 90.5 Ma) and the youngest age (Tinguá – 39.1 Ma) are found in more central massifs of the magmatic alignment. This feature prevents the genesis of this alignment from being attributed to a conventional plume model. In this regard, the authors suggest the presence of a plume with widespread conduits that have used preexisting structures for the intrusion the alkaline rocks, a hypothesis supported by the orientation of these magmatic bodys (massifs and dikes).
References
Almeida, F.F.M. 1983, ‘Relações tectônicas das rochas alcalinas Mesozóicas da região meridional da Plataforma Sul-Americana’, Revista Brasileira de Geociências vol. 13, pp. 139-58.
Almeida, F.F.M. 1991, ‘O alinhamento magmático de Cabo Frio’, Simpósio de Geologia Do Sudeste, vol. 2, pp. 423-8.
Amaral, G., Bushee, J., Cordani, U.G., Kawashita, K. & Reynolds, J.H. 1967, ‘Potassium-argon ages of alkaline rocks from southern Brazil’, Geochim Cosmochim Acta, vol. 31, 117-42.
Araújo, A.L. 1995, ‘Geologia, geoquímica e petrologia das rochas alcalinas da ilha do Cabo Frio e das áreas continentais adjacentes, Arraial do Cabo-RJ’, Masther´s thesis, Universidade Federal Fluminense, Niterói.
Biondi, J.C. 2005, ‘Brazilian mineral deposits associated with alkaline and alkaline-carbonatite complexes. Mesozoic to Cenozoic Alkaline Magmatism in the Brazilian Platform’, FAPESP, pp. 707-50.
Brotzu, P., Barbieri, M., Beccaluva, L., Garbarino, C., Gomes, C.B., Macciotta, G., Melluso, L., Morbidelli, L., Ruberti, E. & Sigolo, J.B. 1992, ‘Petrology and geochemistry of the Passa Quatro alkaline complex, southeastern Brazil’, Journal of South America Earth Sciences, vol. 6, pp. 237-52.
Brotzu, P., Beccaluva, L., Conte, A.M., Fonseca, M., Garbarino, C., Gomes, C.B., Leong, R., Macciotta, G., Mansur, R.L., Melluso, L., Morbidelli, L., Ruberti, E., Sigolo, J.B., Traversa, G. & Valença, J.G. 1989, ‘Petrological and Geochemical Studies of Alkaline Rocks from Continental Brazil: 8. The Syenitic Intrusion of Morro Redondo, RJ’, Geochimica Brasiliensi, vol. 3, pp. 63-80.
Brotzu, P., Melluso, L., Bennio, L., Gomes, C.B., Lustrino, M., Morbidelli, L., Morra, V., Ruberti, E., Tassinari, C. & D’Antonio, M. 2007, ‘Petrogenesis of the Early Cenozoic potassic alkaline complex of Morro de São João, southeastern Brazil’, Journal of South American Earth Sciences, vol. 24, pp. 93-115.
Brotzu, P., Melluso, L., D’Amelio, F., Lustrino, M., Comin-Chiaramonti, P. & Gomes, C.B. 2005, ‘Potassic dikes and intrusions of the Serra do Mar Igneous Province (SE Brazil)’, in P. Comin-Chiaramonti & CB Gomes (eds), Mesozoic to Cenozoic Alkaline Magmatism in the Brazilian Platform, EDUSP/FAPESP, São Paulo, pp. 443-72.
Bushee, J. 1971, ‘Geochronological and petrographic studies of alkaline rocks from Southern Brazil. I. Potassium-argon ages of some alkaline rocks from Southern Brazil. II. A geochronological study of the alkaline massif of Poços de Caldas, Brazil. III. Geology and petrogr’, Unpublished PhD Thesis, 143p.
Celli, N. L., Lebedev, S., Schaeffer, A. J., Ravenna, M. & Gaina, C. 2020, ‘The upper mantle beneath the South Atlantic Ocean, South America and Africa from waveform tomography with massive data sets’, Geophysical Journal International, vol. 221, no. 1, pp. 178-204.
Chiessi, C.M. 2004, ‘Tectônica cenozóica do Maciço Alcalino de Passa Quatro (SP-MG-RJ)’, Dissertation, Universidade de São Paulo.
Cordani, U.G. & Teixeira, W. 1979, ‘Comentários sobre as determinações geocronológicas existentes para as regiões das folhas Rio de Janeiro, Vitória e Iguape. Folhas Rio de Janeiro/Vitória (Iguapé SF23/24/SG 23)’, in Carta Geologica do Brasil ao Milionésimo-Texto explicativo, DNPM, Brasília.
Courtillot, V., Davaille, A., Besse, J. & Stock, J. 2003, ‘Three distinct types of hotspots in the Earth’s mantle’, Earth and Planetary Science Letters, vol. 205, pp. 295-308.
Deckart, K., Féraud, G., Marques, L.S. & Bertrand, H. 1998, ‘New time constraints on dyke swarms related to the Paraná-Etendeka magmatic province, and subsequent South Atlantic opening, southeastern Brazil’, Journal of Volcanology and Geothermal Research, vol. 80, pp. 67-83.
Dutra, C.V. 1966, ‘Método chumbo-alfa e idades de zircões do maciço alcalino de Poços de Caldas, Minas Gerais’, Boletim do Instituto de Geologia, vol. 1, no. 3-4.
Enrich, G.E.R., Azzone, R.G., Ruberti, E., Gomes, C.B. & Comin Chiaramonti, P. 2005, Itatiaia, Passa Quatro and São Sebastião Island, the major alkaline syenitic complexes from the Serra do Mar region, EDUSP/FAPESP, São Paulo.
Fagundes, M.B. 2020, ‘Caracterização petrográfica e geoquímica do Complexo Alcalino do Morro de São João, Casimiro de Abreu-RJ’, Master´s thesis, Universidade do Estado do Rio de Janeiro.
Ferrari, A.L. 2001, ‘Evolução Tectônica do Graben da Guanabara’, Universidade de São Paulo, vol. 1, 449.
Ferreira, L.C. 2018, ‘Processamento, integração e interpretação de dados de aeromagnetometria e aerogamaespectrometria do estado do Rio de Janeiro’, Universidade Federal Fluminense.
Geraldes, M.C., Motoki, A., Vargas, T., Iwanuch, W., Balmant, A. & Motoki, K.F. 2013, ‘Geology, petrography and emplacement mode of the Morro dos Gatos Alkaline intrusive Complex, state of Rio de Janeiro, Brazil’, Geociências, vol. 32, no. 4, pp. 625-39.
Gomes, C.B. & Comin-Chiaramonti, P. 2005, An introduction to the alkaline and alkaline-carbonatitic magmatism in and around the Paraná Basin. Mesozoic to Cenozoic Alkaline Magmatism in the Brazilian Platform, FAPESP, São Paulo.
Gordon, A.C., Santos, A.C., Caitano, G.R., Stanton, N. & Mohriak, W.U. 2023, ‘Magmatic cycles in Santos Basin (SE Brazil): Geochemical characterization and magmatic sources’, Journal of South American Earth Sciences, vol. 126, 104323.
Guarino, V., De’ Gennaro, R., Melluso, L., Ruberti, E. & Azzone, R.G. 2019, ‘The transition from miaskitic to agpaitic rocks, as highlighted by the accessory phase assemblages in the Passa quatro alkaline complex (Southeastern Brazil)’, The Canadian Mineralogist, vol. 57, pp. 339-61.
Guarino, V., Lustrino, M., Zanetti, A., Tassinari, C.C.G., Ruberti, E., de’ Gennaro, R. & Melluso, L. 2021, ‘Mineralogy and geochemistry of a giant agpaitic magma reservoir: The Late Cretaceous Poços de Caldas potassic alkaline complex (SE Brazil)’, Lithos, pp. 398-9, 106330.
Hackspacher, P.C. & Godoy, A.M. 1999. Vertical displacement during late-collisional escape tectonics (Brasiliano Orogeny) in the Ribeira Belt, São Paulo State, Brazil. Journal of African Earth Sciences, vol. 29, pp. 25-32.
Heilbron, M., Eirado, L.G. & Almeida, J. 2016, Mapa geológico e de recursos minerais do estado do Rio de Janeiro, CPRM.
Jackson, S.E., Pearson, N.J., Griffin, W.L. & Belousova, E.A. 2004, ‘The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology’, Chemical Geology, vol. 211, no. 1-2, pp. 47-69.
Jourdan, F. & Renne, P.R. 2007, ‘Age calibration of the Fish Canyon sanidine 40Ar/39Ar dating standard using primary K–Ar standards’, Geochimica et Cosmochimica Acta, vol. 71, no. 2, pp. 387-402.
Koppers, A.A. 2002, ‘ArArCALC – software for 40Ar/39Ar age calculations’, Computers & Geosciences, vol. 28, no. 5, pp. 605-19.
Le Bas, M., Maitre, R. L., Streckeisen, A., Zanettin, B. & IUGS Subcommission on the Systematics of Igneous Rocks. 1986, ‘A chemical classification of volcanic rocks based on the total alkali-silica diagram’, Journal of Petrology, vol. 27, no. 3, pp. 745-50.
Le Maitre, R.W., Streckeisen, A., Zanettin, B., Le Bas, M.J., Bonin, B., Bateman, P., Bellieni, G., Dudek, A., Efremova, S., Keller, J., Lameyre, J.A., Sabine, P.A., Schmid, R., Sorensen, H. & Wooley, A.R. 2002, Igneous rocks: A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks, Cambridge University Press, Cambridge, Cambridge University Press, Cambridge.
Macedo, B.N., Peternel, R., Santos, A.C.D. & Simas, M.P. 2022, ‘Resende lamprophyres: New petrological and structural interpretations for a regional Upper Cretaceous alkaline mafic dyke swarm’, Brazilian Journal of Geology, vol. 52, e20210043.
McDonough, W.F. & Sun, S.-S. 1995, ‘The composition of the Earth’, Chemical Geology, vol. 120, pp. 223-53.
Melluso, L., Guarino, V., Lustrino, M., Morra, V. & de’Gennaro, R. 2017, ‘The REE- and HFSE-bearing phases in the Itatiaia alkaline complex (Brazil) and geochemical evolution of feldspar-rich felsic melts’, Mineralogical Magazine, vol. 81, pp. 217-50.
Milani, E. J. 1997, ‘Evolução tectono-estratigráfica da Bacia do Paraná e seu relacionamento com a geodinâmica fanerozóica do Gondwana sul-ocidental’, PhD thesis, Universidade Federal do Rio Grande do Sul.
Monteiro, L.G.P. 2021, ‘Petrogênese do Maciço Alcalino de Morro dos Gatos: implicações da tectônica do embasamento e seu potencial econômico’, Final paper, Universidade do Estado do Rio de Janeiro.
Montes-Lauar, C.R., Pacca, I.G., Melfi, A.J. & Kawashita, K. 1995, ‘Late Cretaceous alkaline complexes, southeastern Brazil: Paleomagnetism and geochronology’, Earth and Planetary Science Letters, vol. 134, pp. 425-40.
Montes-Lauar, C.R. & Pacca, I.I.G. 1988, ‘Estudo paleomagnético dos maciços alcalinos de Poços de Caldas, Passa Quatro e Itatiaia’, Masther´s thesis, Universidade de São Paulo.
Mota, C.E.M. 2012, ‘Petrogênese e geocronologia das intrusões alcalinas de Morro Redondo, Mendanha e Morro de São João: caracterização do magmatismo alcalino no estado do Rio de Janeiro e implicações geodinâmicas’, PhD thesis, Universidade do Estado do Rio de Janeiro.
Mota, C.E.M., Geraldes, M.C., Horta De Almeida, J.C., Vargas, T., Marinho De Souza, D. & Pimentel Da Silva, A. 2009, ‘Características Isotópicas (Nd e Sr), Geoquímicas e Petrográficas da Intrusão Alcalina do Morro de São João: Implicações Geodinâmicas e Sobre a Composição do Manto Sublitosférico’, Geologia USP: Série Científica, vol. 9, no. 1.
Motoki, A., Araújo, A.L., Sichel, S.E., Geraldes, M.C., Jourdan, F., Motoki, K.F. & da Silva, S. 2013, ‘Nepheline syenite magma differentiation with continental crustal assimilation for the Cabo Frio Island intrusive complex, State of Rio de Janeiro, Brazil’, Geociências, vol. 32, pp. 195-218.
Motoki, A., Sichel, S.E., Soares, R., Aires, J.R., Savi, C., Petrakis, G.H. & Motoki, K.F. 2008, ‘Rochas piroclásticas de preenchimento de condutos subvulcânicos do Mendanha, Itaúna e Ilha de Cabo Frio, RJ, e seu processo de formação com base no modelo de implosão de conduto’, Geociencias, vol. 27, pp. 451-67.
Motoki, A., Sichel, S.E., Vargas, T., Aires, J.R., Iwanuch, W., Mello, S.L.M., Motoki, K.F., Da Silva, S., Balmant, A. & Gonçalves, J. 2010, ‘Geochemical evolution of the felsic alkaline rocks of tanguá and Rio bonito intrusive bodies, state of Rio de Janeiro, Brazil’, Geociencias, vol. 29, pp. 291-310.
Motoki, A., Sichel, S.E., Vargas, T., Melo, D.P. & Motoki, K.F. 2015, ‘Geochemical behaviour of trace elements during fractional crystallization and crustal assimilation of the felsic alkaline magmas of the state of Rio de Janeiro, Brazil’, Anais Da Academia Brasileira De Ciências, vol. 87, pp. 1959-79.
Netto, A.M., Geraldes, M.C. & Vignol-Lelarge, M.L. 2005, ‘Idade traço de fissão em apatita do maciço alcalino do Medanha: implicações sobre o magmatismo cretáceo no Estado do Rio de Janeiro’, IX Simpósio de Geologia do Sudeste.
Renne, P.R., Balco, G., Ludwig, K.R., Mundil, R. & Min, K. 2011, ‘Response to the comment by WH Schwarz et al. on “Joint determination of 40K decay constants and 40Ar∗/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology” by PR Renne et al. (2010)’, Geochimica et Cosmochimica Acta, vol. 75, no. 17, 5097-100.
Ribeiro Filho, E. & Cordani, U.G. 1966, ‘Contemporaneidade das intrusões de rochas alcalinas do Itatiaia, Passa Quatro e Morro Redondo’, Repositório da Produção USP, pp. 62-3.
Riccomini, C., Velázquez, V.F. & Gomes, C.B. 2005, ‘Tectonic controls of the Mesozoic and Cenozoic alkaline magmatism in central-southeastern Brazilian Platform’, in P. Comin-Chiaramonti & C.B. Gomes (eds), Mesozoic to Cenozoic Alkaline Magmatism in the Brazilian Platform, Edusp, São Paulo, pp. 31-56.
Rocha-Júnior, E.R.V., Marques, L.S., Babinski, M., Machado, F.B., Petronilho, L.A. & Nardy, A.J.R. 2020, ‘A telltale signature of Archean lithospheric mantle in the Paraná continental flood basalts genesis’, Lithos, vol. 364, 105519.
Rosa, P.A.S. & Ruberti, E. 2018, ‘Nepheline syenites to syenites and granitic rocks of the Itatiaia Alkaline Massif, Southeastern Brazil: New geological insights into a migratory ring Complex’, Brazilian Journal of Geology, vol. 48, pp. 347-72.
Rosa, P.A.S. 2017, ‘Geologia e evolução petrogenética do maciço alcalino de Itatiaia, MG-RJ’, Masther´s thesis, Universidade de São Paulo.
Santos, A.C. & Hackspacher, P.C. 2021, ‘Meso-Cenozoic Brazilian Offshore Magmatism: Geochemistry, Petrology, and Tectonics’, Academic Press, Cambridge.
Schorscher, H.D. & Shea, M.E. 1992, ‘The regional geology of the Poços de Caldas alkaline complex: Mineralogy and geochemistry of selected nepheline syenites and phonolites’, Journal of Geochemical Exploration, vol. 45, pp. 25-51.
Shea, M.E. 1992, ‘Isotopic geochemical characterization of selected nepheline syenites and phonolites from the Poços de Caldas alkaline complex, Minas Gerais, Brazil’, Journal of Geochemical Exploration, vol. 45, pp. 173-214.
Sichel, S.E., Motoki, A., Iwanuch, W., Vargas, T., Aires, J.R., de Melo, D.P., Motoki, K.F., Balmant, A. & Rodrigues, J.G. 2012, ‘Cristalização fracionada e assimilação da crosta continental pelos magmas de rochas alcalinas félsicas do estado do Rio de Janeiro’, Anuário do Instituto de Geociências, vol. 35, no. 2, pp. 84-104.
Sichel, S.E., Motoki, A., Savi, D.C. & Soares, R. 2008, ‘Subvolcanic vent-filling welded tuff breccia of Cabo Frio Island, State of Rio de Janeiro, Brazil’, REM: Revista Escola de Minas, vol. 61, pp. 423-32.
Silva, D.A. 2019, ‘Geoquímica e geocronologia (U-Pb e Lu-Hf) das intrusões alcalinas félsicas de Soarinho, Tanguá, Rio Bonito e Tinguá: Implicações sobre as fontes do magmatismo alcalino no Estado do Rio de Janeiro’, PhD thesis, Universidade do Estado do Rio de Janeiro.
Silva, D.A., Geraldes, M.C., Vargas, T., Jourdan, F. & Nogueira, C.C. 2015, ‘40Ar/39Ar age, lithogeochemistry and petrographic studies of the Cretaceous Alkaline Marapicu Intrusion, Rio de Janeiro, Brazil’, Boletim do Museu Paraense Emílio Goeldi-Ciências Naturais, vol. 10, pp. 399-422.
Silva, D.A., Motoki, A., Santos, A.C., Mendes, J., Jourdan, F., Geraldes, M.C. & Lana, C.C. 2020, ‘Multiple processes of geochemical evolution for the alkaline rocks of Rio Bonito intrusive complex, Rio de Janeiro State, Brazil: 40Ar/39Ar and U-Pb ages and Lu-Hf isotopes on zircon and constraints on crustal signature’, Geologia USP: Série Científica, vol. 20, pp. 213-34.
Silva, D.A., Geraldes, M.C., Rodrigues, S.W.O., McMaster, M., Evans, N., Nummer, A.R. & Vargas, T. 2018, ‘(U-Th)/He Ages from the Fluorite Mineralization of the Tanguá Alkaline Intrusion Idades’, Anuário do Instituto de Geociências – UFRJ, vol. 41, pp. 14-21.
Silva, D.A., Potratz, G.L. & Geraldes, M.C. 2023, ‘Geochemistry and Geochronology (U-Pb and Lu-Hf) of the Soarinho Alkaline Massif (Brazil): Implications on mantle versus crustal signature of syenitic magma’, Minerals, vol. 13, no. 7, 904.
Silveira, L.S., Dutra, T., Valente, S.C. & Ragatky, D.C. 2005, ‘Modelos eruptivos preliminares para o Complexo Vulcânico de Nova Iguaçu, RJ’, Simpósio de Vulcanismo e Ambientes Associados 3, pp. 333-7.
Smith, P.E., Evensen, N.M., York, D., Szatmari, P., Conceicao, J.C.J., Destro, N., 1999. Getting it on track: Ar-Ar geochronology of alkali intrusions of the Serra do Mar province, Brazil. Eos (Transactions, American Geophysical Union) 80, F1134–F1135.
Smith, P.E., Evensen, N.M., York, D., Szatmari, P. & de Oliveira, D.C. 2001, ‘Single-crystal 40Ar-39Ar dating of pyrite: No fool's clock’, Geology, vol. 29, no. 5, pp. 403-6.
Sonoki, I.K. & Garda, G.M. 1988, ‘Idades K-Ar de rochas alcalinas do Brasil Meridional e Paraguai Oriental: compilação e adaptação as novas constantes de decaimento’, Boletim IG–USP: Série Científica, vol. 19, pp. 63-85.
Takenaka, L.B. 2014, ‘Refinamento do método de datação U-Pb in situ via LA-Q-ICP-MS: aplicação no Complexo Alcalino Poços de Caldas – MG’, Dissertation, Universidade Federal de Ouro Preto.
Thomaz Filho, A., de Cesero, P., Mizusaki, A.M. & Leão, J.G. 2005, ‘Hot spot volcanic tracks and their implications for South American plate motion, Campos basin (Rio de Janeiro state), Brazil’, Journal of South American Earth Sciences, vol. 18, pp. 383-9.
Thompson, R.N., Gibson, S.A., Mitchell, J.G., Dickin, A.P., Leonardos, O.H., Brod, J.A. & Greenwood, J.C. 1998, ‘Migrating Cretaceous-Eocene Magmatism in the Serra do Mar Alkaline Province, SE Brazil: Melts from the Deflected Trindade Mantle Plume?’, Journal of Petrology, vol. 39, pp. 1493-526.
Tsekhmistrenko, M., Sigloch, K., Hosseini, K. & Barruol, G. 2021, ‘A tree of Indo-African mantle plumes imaged by seismic tomography’, Nature Geoscience, vol. 14, no. 8, pp. 612-9.
Ulbrich, H., Demaiffe, D., Vlach, S.R.F. & Ulbrich, M.N.C. 2003, ‘Geochemical and Sr, Nd and Pb isotope signatures of phonolites and nepheline syenites from the Poços de Caldas alkaline massif, southeastern Brazil’, South American Symposium of Isotope Geology, pp. 698-701.
Ulbrich, H., Vlach, S.R.F., Demaiffe, D. & Ulbrich, M.N.C. 2005, ‘Mesozoic to Cenozoic Alkaline Magmatism in the Brazilian Plataform’, American Mineralogist, vol. 92, no. 4, 711.
Ulbrich, H.H.G.J., Vlach, S.R.F., Ulbrich, M.N.C. & Kawashita, K. 2002, ‘Penecontemporaneous syenitic-phonolitic and basic-ultrabasic-carbonatitic rocks at the Poços de Caldas Alkaline Massif, SE Brazil: Geologic and geochronologic evidence’, Revista Brasileira de Geociências, vol. 32, pp. 15-26.
Valença, J.G. 1980, ‘Geology, petrography and petrogenesis of some alkaline igneous complexes of Rio de Janeiro State, Brazil’, PhD thesis, West Ontario University.
Valença, J., Reis, A.P., Carvalho Filho, C.A., Soares Filho, J.R.S. & Braun, P.V.C.B. 1983, ‘Geologia do complexo ígneo alcalino do Morro Redondo (Município de Resende, Estado do Rio de Janeiro)’, Anais da Academia Brasileira de Ciências, vol. 55, pp. 135-6.
Vlach, S.R.F., Vilalva, F.C.J., Ulbrich, M.N.C., Ulbrich, H.H.G.J. & Vasconcelos, P.M. 2003, ‘Phlogopite from carbonatitic veins associated with the Poços de Caldas Alkaline Massif, SE Brazil: Mineralogy and 40Ar/39Ar dating by the laser step heating method’, IV South American Symposium on Isotope Geology.
Wiedenbeck, M.A P.C., Alle, P., Corfu, F.Y., Griffin, W.L., Meier, M., Oberli, F.V., Von Quadt, A., Roddick J.C. & Spiegel, W. 1995, ‘Three natural zircon standards for U‐Th‐Pb, Lu‐Hf, trace element and REE analyses’, Geostandards Newsletter, vol. 19, no. 1, pp. 1-23.
Willbold, M. & Stracke, A. 2010, ‘Formation of enriched mantle components by recycling of upper and lower continental crust’, Chemical Geology, vol. 276, no. 3-4, pp. 188-97.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
This journal is licensed under a Creative Commons — Attribution 4.0 International — CC BY 4.0, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.