New Insights into Nd-Hf Isotopic Data and U-Pb Ages from the Tanguá Massif: Implications for the Magmatic Evolution

Authors

DOI:

https://doi.org/10.11137/1982-3908_2026_49_65682

Keywords:

Poços de Caldas–Cabo Frio Alignment, Mantle sources, Isotopic decoupling

Abstract

The Tanguá Massif (TM) is an alkaline intrusion that is part of the Poços de Caldas-Cabo Frio Alignment (PCCFA), which comprises more than 25 intrusive bodies and extends over 1000 km along a WNW-ESE trend in southeastern Brazil. This study presents new insights into the evolution and genesis of the TM based on updated geological mapping, combined with mineralogical, petrographic, lithogeochemical, geochronological, and isotopic analyses. A new lithofacies map is proposed for the Tanguá Massif, subdividing the massif into five main units: i) central nepheline syenite; ii) intermediate nepheline syenite; iii) syenite; iv) breccias; v) undivided nepheline syenite. Additionally, phonolites and trachytes occur as dikes crosscutting the massif. U-Pb geochronological data reveal two distinct age groups: an older Cenomanian phase (94.8 Ma) and a younger Danian-Maastrichtian phase (ca. 60-70 Ma). The presence of an older syenite aged than previously reported – the oldest age for the PCCFA – suggests that the conventional mantle plume model may not adequately explain the origin of this province. Sr-Nd and Lu-Hf isotopic signatures indicate that the syenites and nepheline-syenites plot in the DMM-EMI array, whereas phonolite in the DMM-EMII array, suggesting mixing of different mantle components according to other studies. Geochemical and isotopic parameters (e.g., SSI, Zr/TiO2, REE sum, and εNd) highlight the significant role of crustal assimilation during the evolution of the TM, a process also proposed for other PCCFA bodies. Furthermore, ratios such as Th/Yb and Ba/La, combined with Nd-Hf isotopic decoupling, suggest the involvement of oceanic sediments associated with subducted slabs in the genesis of the magmas. These findings provide new insights into the magmatic evolution of the Tanguá Massif and contribute to a broader understanding of the processes controlling the formation of the PCCFA alkaline province.

Downloads

Download data is not yet available.

Author Biographies

Marco Aurélio Maia Teodoro, Universidade do Estado do Rio de Janeiro (UERJ)

I am a geologist with a master's degree in Economic Geology from the Federal University of Minas Gerais. Currently, I am a doctoral candidate in Geosciences at the State University of Rio de Janeiro.

Anderson Costa dos Santos, Universidade do Estado do Rio de Janeiro (UERJ)

Professor and Researcher at the Faculty of Geology, Department of Mineralogy and Igneous Petrology. São Francisco Xavier Street, 524 - 4th floor/block A, Rio de Janeiro (RJ), Brazil. Researcher at the Tektos Group and GeoAtlântico Institute, State University of Rio de Janeiro.

Luiz Carlos Bertolino, Centro de Tecnologia Mineral (CETEM)

Researcher at the Mineral Technology Center (CETEM), Rio de Janeiro/Brazil. Professor and Researcher at the Faculty of Geology, Department of Mineralogy and Igneous Petrology, State University of Rio de Janeiro.

Henrique Bruno, Universidade do Estado do Rio de Janeiro (UERJ)

Professor and Researcher at the Faculty of Geology, State University of Rio de Janeiro.

Mauro Cesar Geraldes, Universidade do Estado do Rio de Janeiro (UERJ)

Professor and Researcher at the Faculty of Geology, State University of Rio de Janeiro.

References

Almeida, F.D. 1976, ‘The system of continental rifts bordering the Santos Basin, Brazil’, Anais da Academia Brasileira de Ciências, vol. 48, pp 15-26.

Almeida, F.F.M. 1983, ‘Relações tectônicas das rochas alcalinas Mesozóicas da região meridional da Plataforma Sul-Americana’, Revista Brasileira de Geociências, vol. 13, pp 139–158, DOI:10.25249/0375-7536.1983133139158

Almeida, F.F.M. 1986, ‘Distribuição regional e relações tectônicas do magmatismo pós-paleozóico no Brasil’, Revista Brasileira de Geociências, vol. 16, pp 325–349.

Almeida, F.F.M. 1991, ‘O alinhamento magmático de Cabo Frio’, II Simpósio de Geologia Do Sudeste, SBG/Núcleos SP e RJ, Atas. pp. 423–428.

Almeida, F.F.M., Carneiro, C.D.R. & Mizusaki, A.M.P. 1996, ‘Correlação do magmatismo das bacias da margem continental brasileira com o das áreas emersas adjacentes’, Brazilian Journal of Geology, vol. 26, pp. 125–138, DOI:10.25249/0375-7536.19963125138

Alves, E. da C., Maia, M., Sichel, S.E. & Campos, C.M.P. 2006, ‘Zona de fratura de Vitória-Trindade no Oceano Atlântico sudeste e suas implicações tectônicas’, Revista Brasileira de Geofísica, vol. 24, pp. 117–127, DOI:10.1590/S0102-261X2006000100009

Andersen, T. & Sørensen, H. 1993, ‘Crystallization and metasomatism of nepheline syenite xenoliths in quartz-bearing intrusive rocks in the Permian Oslo rift, SE Norway’, Norsk geologisk tidsskrift, vol. 73, no. 4, pp. 250-266.

Azzone, R.G., Ruberti, E., Da Silva, J.C.L., De Barros Gomes, C., Rojas, G.E.E., De Hollanda, M.H.B.M. & Tassinari, C.C.G. 2018, ‘Upper Cretaceous weakly to strongly silica-undersaturated alkaline dike series of the Mantiqueira Range, Serra do Mar alkaline province: Crustal assimilation processes and mantle source signatures’, Brazilian Journal of Geology, vol. 48, pp. 373–390, DOI:10.1590/2317-4889201820170089

Biondi, J.C. 2005, ‘Brazilian mineral deposits associated with alkaline and alkaline-carbonatite complexes’ in P. Comin-Chiaramonti & C.B. Gomes (eds), Mesozoic to Cenozoic Alkaline Magmatism in the Brazilian Platform, EDUSP/FAPESP, São Paulo, Brazil, pp. 707–750, DOI:10.2138/am.2007.485

Brotzu, P., Melluso, L., Bennio, L., Gomes, C.B., Lustrino, M., Morbidelli, L., Morra, V., Ruberti, E., Tassinari, C. & D’Antonio, M. 2007, ‘Petrogenesis of the Early Cenozoic potassic alkaline complex of Morro de São João, southeastern Brazil’, Journal of South American Earth Sciences, vol. 24, pp. 93–115, DOI:10.1016/j.jsames.2007.02.006

Brotzu, P., Melluso, L., D’Amelio, F., Lustrino, M., Comin-Chiaramonti, P. & Gomes, C.B. 2005, ‘Potassic dikes and intrusions of the Serra do Mar Igneous Province (SE Brazil)’, in P. Comin-Chiaramonti & C.B. Gomes (eds), Mesozoic to Cenozoic Alkaline Magmatism in the Brazilian Platform, EDUSP/FAPESP, São Paulo, Brazil, pp. 443–472, DOI:10.2138/am.2007.485

Ceuleneer, G., Monnereau, M., Rabinowicz, M. & Rosemberg, C. 1993, ‘Thermal and petrological consequences of melt migration within mantle plumes’, Philosophical Transactions of the Royal Society of London, Series A: Physical and Engineering Sciences, vol. 342, pp. 53–64, DOI:10.1098/rsta.1993.0004

Chaffey, D.J., Cliff, R.A. & Wilson, B.M. 1989, ‘Characterization of the St. Helena source’, Geological Society, London, Special Publications, vol. 42, pp. 257–276, DOI:10.1144/GSL.SP.1989.042.01.16

Chauvel, C., Lewin, E., Carpentier, M., Arndt, N.T. & Marini, J.C. 2008, ‘Role of recycled oceanic basalt and sediment in generating the Hf–Nd mantle array’, Nature Geoscience, vol. 1, pp. 64-67.

Condie, K.C. 2016, Earth as an evolving planetary system, Academic Press.

Cordani, U.G. & Teixeira, W. 1979, ‘Comentários sobre as determinações geocronológicas existentes para as regiões das folhas Rio de Janeiro, Vitória e Iguape’, Folhas Rio de Janeiro/Vitória (Iguapé SF23/24/SG 23. Carta Geológica do Brasil ao Milionésimo-Texto explicativo. DNPM, Brasília.

Courtney, R.C. & White, R.S. 1986, ‘Anomalous heat flow and geoid across the Cape Verde Rise: evidence for dynamic support from a thermal plume in the mantle’, Geophysical Journal International, vol. 87, pp. 815–867, DOI:10.1111/j.1365-246X.1986.tb01973.x

Dahlquist, J.A., Galindo, C., Cámera, M.M.M., Moreno, J.A., Alasino, P.H., Basei, M.A. & Grande, M.M. 2020, ‘A combined zircon Hf isotope and whole-rock Nd and Sr isotopes study of Carboniferous A-type granites, Sierras Pampeanas of Argentina’, Journal of South American Earth Sciences, vol. 100, 102545, DOI:10.1016/j.jsames.2020.102545

De la Roche, H.D., Leterrier, J. T., Grandclaude, P. & Marchal, M. 1980, ‘A classification of volcanic and plutonic rocks using R1R2-diagram and major-element analyses—its relationships with current nomenclature’ Chemical geology, vol. 29, no. 1-4, pp. 183-210.

Dumańska-Słowik, M., Powolny, T., & Nguyen Khac, G. 2023, ‘Mineralogy and Geochemistry of Nepheline Syenite From the Bang Phuc Massif of the Alkaline Cho Don Complex in North-Eastern Vietnam—Implications for Magma Evolution and Fluid–Rock Interactions’, Journal of Petrology, vol. 64, no. 7.

Eisele, J., Sharma, M., Galer, S.J.G., Blichert-Toft, J., Devey, C.W. & Hofmann, A.W. 2002, ‘The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot’, Earth and Planetary Science Letters, vol. 196, pp. 197–212, DOI:10.1016/S0012-821X(01)00601-X

Enrich, G.E.R., Azzone, R.G., Ruberti, E., Gomes, C.B. & Comin Chiaramonti, P. 2005, ‘Itatiaia, Passa Quatro and São Sebastião Island, the major alkaline syenitic complexes from the Serra do Mar region’, in P. Comin-Chiaramonti & C.B. Gomes (eds), Mesozoic to Cenozoic Alkaline Magmatism in the Brazilian Platform, EDUSP/FAPESP, São Paulo, Brazil, pp. 419–442, DOI:10.2138/am.2007.485

Fagundes, M.B., dos Santos, A.C., Geraldes, M., de Castro Valente, S., Caitano, G.R. & Rocha-Júnior, E.R.V. 2025, ‘Petrogenesis, magmatic evolution of the Morro de São João Alkaline Massif, southeastern Brazil, and implications for the evolution of the South American Platform’, Journal of South American Earth Sciences, vol. 156, 105456, DOI:10.1016/j.jsames.2025.105456

Faure, G. & Mensing, T.M. 2005, Principles and applications, John Wiley & Sons, Inc., p. 897.

Ferrari, A.L. 2001, ‘Evolução Tectônica do Graben da Guanabara’, PhD Thesis, Universidade de São Paulo, DOI:10.11606/T.44.2001.tde-29082013-152530

Fodor, R.V., Mukasa, S.B., Gomes, C.B. & Cordani, U.G. 1989, ‘Ti-rich Eocene basaltic rocks, Abrolhos platform, offshore Brazil, 18° S: petrology with respect to South Atlantic magmatism’, Journal of Petrology, vol. 30, no. 3, pp. 763-786, DOI:10.1093/petrology/30.3.763

Gao, Y., Hou, Z., Kamber, B. S., Wei, R., Meng, X. & Zhao, R. 2007, ‘Adakite-like porphyries from the southern Tibetan continental collision zones: evidence for slab melt metasomatism’, Contributions to Mineralogy and Petrology, vol. 153, pp. 105-120.

Geraldes, M.C., Motoki, A., Vargas, T., Iwanuch, W., Balmant, A. & Motoki, K.F. 2013, ‘Geology, petrography and emplacement mode of the Morro dos Gatos alkaline intrusive Complex, state of Rio de Janeiro, Brazil’, Geociências, vol. 32, no. 4, pp. 625-639.

Geraldes, M.C., Vargas, T.C., Evans, N. & Nummer, A.R. 2009, ‘Idades U-Th/He das mineralizações de fluorita da Intrusão Alcalina de Tanguá’, Congresso Brasileiro de Geoquímica.

Gerlach, D.C., Stormer, J.C. & Mueller, P.A. 1987, ‘Isotopic geochemistry of Fernando de Noronha’, Earth and Planetary Science Letters, vol. 85, pp. 129–144, DOI:10.1016/0012-821X(87)90027-6

Gibson, S.A., Thompson, R.N., Leonardos, O.H., Dickin, A.P., Mitchell, J.G. 1995, ‘The Late Cretaceous impact of the Trindade mantle plume: evidence from large-volume, mafic, potassic magmatism in SE Brazil’, Journal of Petrology vol. 36, pp. 189–229, DOI:10.1093/petrology/36.1.189

Gibson, S.A., Thompson, R.N., Weska, R.K., Dickin, A.P. & Leonardos, O.H. 1997, ‘Late Cretaceous rift-related upwelling and melting of the Trindade starting mantle plume head beneath western Brazil’, Contributions to Mineralogy and Petrology, vol. 126, pp. 303–314, DOI:10.1007/s004100050252

Gordon, A.C., Santos, A.C., Caitano, G.R., Stanton, N. & Mohriak, W. U. 2023, ‘Magmatic cycles in Santos Basin (SE Brazil): Geochemical characterization and magmatic sources’, Journal of South American Earth Sciences, vol. 126, 104323.

Guarino, V., Lustrino, M., Zanetti, A., Tassinari, C.C.G., Ruberti, E., Gennaro, R. & Melluso, L. 2021, ‘Mineralogy and geochemistry of a giant agpaitic magma reservoir: The Late Cretaceous Poços de Caldas potassic alkaline complex (SE Brazil)’, Lithos, vol. 398–399, 106330, DOI:10.1016/j.lithos.2021.106330

Hackspacher, P.C. & Godoy, A.M. 1999, ‘Vertical displacement during late-collisional escape tectonics (Brasiliano Orogeny) in the Ribeira Belt, São Paulo State, Brazil’, Journal of African Earth Sciences, vol. 29, pp. 25–32, DOI:10.1016/S0899-5362(99)00077-9

Hart, S.R. 1988, ‘Heterogeneous mantle domains: signatures, genesis and mixing chronologies’, Earth and Planetary Science Letters, vol. 90, pp. 272–296, DOI:10.1016/0012-821X(88)90131-8

Hawkesworth, C.J., O'nions, R. K. & Arculus, R. J. 1979, ‘Nd and Sr isotope geochemistry of island arc volcanics, Grenada, Lesser Antilles’, Earth and Planetary Science Letters, vol 45, no. 2, pp. 237-248, DOI:10.1016/0012-821X(79)90126-2

Heilbron, M., Eirado, L.G. & Almeida, J. 2016, ‘Mapa geológico e de recursos minerais do estado do Rio de Janeiro’, https://rigeo.sgb.gov.br/handle/doc/18458

Heilbron, M., Tupinamba, M., Valeriano, C.M., Armstrong, R., Eirado, L.G.S., Melo, R.S., Simonetti, A., Soares, A.C.P. & Machado, N. 2013, ‘The Serra da Bolívia Complex: the record of a new Neoproterozoic arc-related unit at Ribeira belt’, Precambrian Research, vol. 238, pp. 158–175, DOI:10.1016/j.precamres.2013.09.014.

Heineck, C. A. & Raposo, F.O. 1981, Projeto Fluorita, CPRM.

Herz, N. 1977, ‘Timing of spreading in the South Atlantic: Information from Brazilian alkalic rocks’, Geological Society of America Bulletin, vol. 88, pp. 101–112, DOI:10.1130/0016-7606(1977)88<101:TOSITS>2.0.CO;2

Hoffman, A.W. 2014, ‘Sampling mantle heterogeneity through oceanic basalts: Isotopes and trace elements’, Treatise on geochemistry, vol. 3, pp. 67-101, DOI:10.1016/B978-0-08-095975-7.00203-5

Jackson, M.G. & Dasgupta, R. 2008, ‘Compositions of HIMU, EM1, and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts’, Earth and Planetary Science Letters, vol. 276, pp. 175–186, DOI:10.1016/j.epsl.2008.09.023

Jones, R.E., van Keken, P.E., Hauri, E.H., Tucker, J.M., Vervoort, J. & Ballentine, C.J. 2019, ‘Origins of the terrestrial Hf-Nd mantle array: evidence from a combined geodynamical-geochemical approach’, Earth and Planetary Science Letters, vol. 518, pp. 26-39, DOI:10.1016/j.epsl.2019.04.015

Kay, R.W. & Gast, P.W. 1973, ‘The rare earth content and origin of alkali-rich basalts’, The Journal of Geology, vol. 81, no. 6, pp. 653-682, DOI:10.1086/627919

Laporte, D., Lambart, S., Schiano, P. & Ottolini, L. 2014, ‘Experimental derivation of nepheline syenite and phonolite liquids by partial melting of upper mantle peridotites’, Earth and Planetary Science Letters, vol. 404, pp. 319-331.

Le Bas, M.J., Maitre, R.L., Streckeisen, A., Zanettin, B. & IUGS Subcommission on the Systematics of Igneous Rocks. 1986, ‘A chemical classification of volcanic rocks based on the total alkali-silica diagram’, Journal of petrology, vol. 27(3), pp. 745-750, DOI:10.1093/petrology/27.3.745

Le Roex, A.P., Cliff, R.A. & Adair, B.J.I. 1990, ‘Tristan da Cunha, South Atlantic: geochemistry and Petrogenesis of a Basanite-Phonolite Lava Series’, Journal of Petrology, vol. 31, pp. 779–812, DOI:10.1093/petrology/31.4.779

Liew, T.C. & Hofmann, A.W. 1988, ‘Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of central Europe: indications from a Nd and Sr isotopic study’, Contributions to Mineralogy and Petrology, vol. 98, pp. 129-138.

Ludwig, K. R. 2003, ‘User's manual for IsoPlot 3.0. A geochronological toolkit for Microsoft Excel’, v. 71.

Machado, N., Valladares, C., Heilbron, M. & Valeriano, C. 1996, ‘U-Pb geochronology of the central Ribeira belt (Brazil) and implications for the evolution of the Brazilian Orogeny’, Precambrian Research, vol. 79, pp. 347–361, DOI:10.1016/0301-9268(95)00103-4

Maia, T.M., dos Santos, A.C., Rocha-Júnior, E.R.V., Valeriano, C. de M., Mendes, J.C., Jeck, I.K., dos Santos, W.H., de Oliveira, A.L. & Mohriak, W.U. 2021, ‘First petrologic data for Vitória Seamount, Vitória-Trindade Ridge, South Atlantic: a contribution to the Trindade mantle plume evolution’, Journal of South American Earth Sciences, vol. 109, DOI:10.1016/j.jsames.2021.103304

McDonough, W.F. & Sun, S.S. 1995, ‘The composition of the Earth’, Chemical geology, vol. 120, no. 3-4, pp. 223-253, DOI:10.1016/0009-2541(94)00140-4

Melluso, L., Guarino, V., Lustrino, M., Morra, V. & de’ Gennaro, R. 2017, ‘The REE- and HFSE-bearing phases in the Itatiaia alkaline complex (Brazil) and geochemical evolution of feldspar-rich felsic melts’, Mineralogical Magazine, vol. 81, pp. 217–250, DOI:10.1180/minmag.2016.080.122

Middlemost, E.A. 1975, ‘The basalt clan’, Earth-science reviews, vol. 11, no. 4, pp. 337-364.

Mota, C.E.M. 2012, ‘Petrogênese e geocronologia das intrusões alcalinas de Morro Redondo, Mendanha e Morro de São João: caracterização do magmatismo alcalino no estado do Rio de Janeiro e implicações geodinâmicas’, PhD Thesis, Universidade do Estado do Rio de Janeiro, Brazil.

Motoki, A., Sichel, S.E., Silva, S. & Motoki, K.F. 2015a, ‘Morphologic characteristics and erosive resistance of felsic alkaline intrusive massif of Tanguá, State of Rio de Janeiro, Brazil, based on the aster gdem’, Geociências, vol. 34, pp. 19–31.

Motoki, A., Sichel, S.E., Soares, R., Aires, J.R., Savi, C., Petrakis, G.H. & Motoki, K.F. 2008, ‘Rochas piroclásticas de preenchimento de condutos subvulcânicos do Mendanha, Itaúna e Ilha de Cabo Frio, RJ, e seu processo de formação com base no modelo de implosão de conduto’, Geociências, vol. 27, pp. 451–467.

Motoki, A., Sichel, S.E., Vargas, T., Aires, J.R., Iwanuch, W., Mello, S.L.M., Motoki, K.F., da Silva, S., Balmant, A. & Gonçalves, J. 2010, ‘Geochemical evolution of the felsic alkaline rocks of Tanguá and Rio Bonito intrusive bodies, state of Rio de Janeiro, Brazil’, Geociências, vol. 29, pp. 291–310.

Motoki, A., Sichel, S.E., Vargas, T., Melo, D.P. & Motoki, K.F. 2015b, ‘Geochemical behaviour of trace elements during fractional crystallization and crustal assimilation of the felsic alkaline magmas of the state of Rio de Janeiro, Brazil’, Anais da Academia Brasileira de Ciências, vol 87, pp. 1959–1979, DOI:10.1590/0001-3765201520130385

Neto, C., Valeriano, C. M., Enzweiler, J., Paravidini, G., Carvalho, M., Heilbron, M., Lana, C. & Larizzatti, J.H. 2023, ‘ID‐TIMS Sm‐Nd and Sr Isotope Ratios of Reference Material Basalt Ribeirão Preto (BRP‐1)’, Geostandards and Geoanalytical Research, vol. 47, no. 4, pp. 841-854, DOI:10.1111/ggr.12498

Pearce, J. A. 2008, ‘Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust’, Lithos, vol. 100, no. 1-4, pp. 14-48.

Plank, T. 2005, ‘Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents’, Journal of Petrology, vol. 46, no. 5, pp. 921-944, DOI:10.1093/petrology/egi005

Quaresma, G.D.O.A., dos Santos, A.C., Rocha-Júnior, E.R.V., Bonifácio, J., Rego, C.A.Q., Mata, J., Valeriano, C. de M., Jourdan, F., Mattielli, N. & Geraldes, M.C. 2023, ‘Isotopic constraints on Davis bank, Vitória-Trindade Ridge: A Revised Petrogenetic Model’, Journal of South American Earth Sciences, vol. 122, 104099, DOI:10.1016/j.jsames.2022.104099

Riccomini, C., Velázquez, V.F. & Gomes, C.B. 2005, ‘Tectonic controls of the Mesozoic and Cenozoic alkaline magmatism in central-southeastern Brazilian Platform’, in P. Comin-Chiaramonti & C.B. Gomes (eds), Mesozoic to Cenozoic Alkaline Magmatism in the Brazilian Platform, Edusp, pp. 31–56, DOI:10.2138/am.2007.485

Rosa, P.A. da S. & Ruberti, E. 2018, ‘Nepheline syenites to syenites and granitic rocks of the Itatiaia Alkaline Massif, Southeastern Brazil: new geological insights into a migratory ring Complex’, Brazilian Journal of Geology, vol. 48, pp. 347–372. DOI:10.1590/2317-4889201820170092

Rosa, P.A.S. 2017, ‘Geologia e evolução petrogenética do maciço alcalino de Itatiaia, MG-RJ’, Master dissertation, USP, São Paulo, DOI:10.11606/T.44.2018.tde-10072018-152847

Sadowski, G.R. & Dias Netto, C. de M. 1981, ‘O Lineamento Sismotectônico de Cabo Frio’, Revista Brasileira de Geociências, vol. 11, no. 4, pp. 209–212.

Salters, V.J., Mallick, S., Hart, S.R., Langmuir, C.E. & Stracke, A. 2011, ‘Domains of depleted mantle: New evidence from hafnium and neodymium isotopes’, Geochemistry, Geophysics, Geosystems, vol. 12, no. 8, DOI:10.1029/2011GC003617

Salters, V.J.M. & Stracke, A. 2004, ‘Composition of the depleted mantle’, Geochemistry, Geophysics, Geosystems, vol. 5, no. 5, DOI:10.1029/2003GC000597

Santos, A.C. & Hackspacher, P.C. 2021, Meso-Cenozoic Brazilian Offshore Magmatism: Geochemistry, Petrology, and Tectonics, Academic Press.

Shand, S.J. 1943, Eruptive Rocks. Their Genesis Composition. Classification, and Their Relation to Ore-Deposits with a Chapter on Meteorite, John Wiley & Sons, New York

Sichel, S.E., Motoki, A., Iwanuch, W., Vargas, T., Aires, J.R., de Melo, D.P., Motoki, K.F., Balmant, A. & Rodrigues, J.G. 2012, ‘Cristalização fracionada e assimilação da crosta continental pelos magmas de rochas alcalinas félsicas do estado do Rio de Janeiro’, Anuário do Instituto de Geociências, vol. 35, no. 2, pp. 84-104, DOI:10.11137/2012_2_84_104

Silva, D.A, 2019, ‘Geoquímica e geocronologia (U-Pb e Lu-Hf) das intrusões alcalinas félsicas de Soarinho, Tanguá, Rio Bonito e Tinguá: Implicações sobre as fontes do magmatismo alcalino no Estado do Rio de Janeiro’, PhD Thesis, Universidade do Estado do Rio de Janeiro, Brazil.

Silva, D.A., Geraldes, M.C., Rodrigues, S.W.O., McMaster, M., Evans, N., Nummer, A.R. & Vargas, T. 2018, ‘(U-Th)/He Ages from the Fluorite Mineralization of the Tanguá Alkaline Intrusion Idades’, Anuário do Instituto de Geociências – UFRJ, vol. 41, pp. 14–21, DOI:10.11137/2018_2_14_21

Silva, D.A., Potratz, G.L. & Geraldes, M.C. 2023, ‘Geochemistry and Geochronology (U-Pb and Lu-Hf) of the Soarinho Alkaline Massif (Brazil): Implications on mantle versus crustal signature of syenitic magma’, Minerals, vol. 13, no. 7, p. 904, DOI:10.3390/min13070904

Sonoki, I.K. & Garda, G.M. 1988, ‘Idades K-Ar de rochas alcalinas do Brasil Meridional e Paraguai Oriental: compilação e adaptação as novas constantes de decaimento’, Boletim IG- USP, Série Científica, vol. 19, pp. 63–85, DOI:10.11606/issn.2316-8986.v19i0p63-85

Stracke, A. 2012, ‘Earth's heterogeneous mantle: A product of convection-driven interaction between crust and mantle’, Chemical Geology, vol. 330, pp. 274-299, DOI:10.1016/j.chemgeo.2012.08.007

Teodoro, M.A.M., Santos, A.C.D., Bertolino, L.C., Rosa, P.A.D.S., Bezerra, C.R., Monteiro, L.G.P., Silva, J.C.L., Fagundes, M.B., Geraldes, M.C., Cardoso, L.M.C., & Jourdan, F. 2025, ‘Poços de Caldas-Cabo Frio Alignment: a Petrochronological Review of an Unconventional Plume Model’, Anuário do Instituto de Geociências, vol. 48, e65281, DOI:10.11137/1982-3908_2025_48_65281

Tera, F. & Wasserburg, G. J. 1972, ‘U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks’, Earth and Planetary Science Letters, vol. 14, no. 3, pp. 281-304.

Terakado, Y. 1980, ‘Fine structures of rare earth element patterns of Tahitian rocks’, Geochemical Journal, vol. 14, no. 4, pp. 155-166, DOI:10.2343/geochemj.14.155

Thomaz Filho, A. & Rodrigues, A.L. 1999, ‘O Alinhamento De Rochas Alcalinas Poços De Caldas-Cabo Frio (RJ) E Sua Continuidade Na Cadeia Vitória-Trindade’, Revista Brasileira de Geociências, vol. 29, pp. 189–194, DOI:10.25249/0375-7536.199929189194

Thomaz Filho, A., de Cesero, P., Mizusaki, A.M. & Leão, J.G. 2005, ‘Hot spot volcanic tracks and their implications for South American plate motion, Campos basin (Rio de Janeiro state), Brazil’, Journal of South American Earth Sciences, vol. 18, pp. 383–389, DOI:10.1016/j.jsames.2004.11.006

Thompson, R.N., Gibson, S.A., Mitchell, J.G., Dickin, A.P., Leonardos, O.H., Brod, J.A. & Greenwood, J.C. 1998, ‘Migrating Cretaceous-Eocene Magmatism in the Serra do Mar Alkaline Province, SE Brazil: Melts from the Deflected Trindade Mantle Plume?’, Journal of Petrology, vol. 39, pp. 1493–1526, DOI:10.1093/petroj/39.8.1493

Ulbrich, H., Demaiffe, D., Vlach, S.R.F. & Ulbrich, M.N.C. 2003, ‘Geochemical and Sr, Nd and Pb isotope signatures of phonolites and nepheline syenites from the Poços de Caldas alkaline massif, southeastern Brazil’, Proceedings of South American Symposium of Isotope Geology, pp. 698–701.

Valença, J.G. 1980, ‘Geology, petrography and petrogenesis of some alkaline igneous complexes of Rio de Janeiro State, Brazil’, PhD Thesis, West Ontario University, Canada.

Valeriano, C.M., Ragatky, D., Geraldes, M.C., Heilbron, M., Valladares, C.S., Schmitt, R., Tupinambá, M., Palermo, N., Almeida, J.C.H., Duarte, B.P., Martins Jr., E.C. & Nogueira, J.R. 2003, ‘A new TIMS laboratory under construction in Rio de Janeiro, Brazil’, Proceedings of Symposium on Isotope Geology.

VanDecar, J.C., James, D.E. & Assumpção, M., 1995, ‘Seismic evidence for a fossil mantle plume beneath South America and implications for plate driving forces’, Nature, vol. 378, pp. 25–31, DOI:10.1038/378025a0

Vermeesch, P. 2018, ‘IsoplotR: A free and open toolbox for geochronology’, Geoscience Frontiers, vol. 9, no. 5, pp. 1479-1493, DOI:10.1016/j.gsf.2018.04.001

Watson, S. & McKenzie, D. 1991, ‘Melt generation by plumes: a study of Hawaiian volcanism’, Journal of Petrology, vol. 32, pp. 501–537, DOI:10.1093/petrology/32.3.501

Woodhead, J.D., Hergt, J.M., Davidson, J.P. & Eggins, S.M. 2001, ‘Hafnium isotope evidence for ‘conservative’ element mobility during subduction zone processes’, Earth and Planetary Science Letters, vol. 192, no. 3, pp. 331-346, DOI:10.1016/S0012-821X(01)00453-8

Workman, R.K. & Hart, S.R., 2005, ‘Major and trace element composition of the depleted MORB mantle (DMM)’, Earth and Planetary Science Letters, vol. 231, pp. 53–72, DOI:10.1016/j.epsl.2004.12.005

Workman, R.K., Hart, S.R., Jackson, M., Regelous, M., Farley, K.A., Blusztajn, J., Kurz, M. & Staudigel, H. 2004, ‘Recycled metasomatized lithosphere as the origin of the Enriched Mantle II (EM2) end‐member: Evidence from the Samoan Volcanic Chain’, Geochemistry, Geophysics, Geosystems, vol. 5, no. 4, DOI:10.1029/2003GC000623

Yan, X. & Jiang, S.Y. 2019, ‘Petrogenesis and tectonic implications of Early Cretaceous shoshonitic syenites in the northern Wuyi Mt Range, Southeast China’, Journal of Asian Earth Sciences, vol. 180, 103877, DOI:10.1016/j.jseaes.2019.103877

Zalán, P.V. & Oliveira, J.A.B. 2005, ‘Origem e evolução estrutural do Sistema de Riftes Cenozóicos do Sudeste do Brasil’, Boletim de Geociências da PETROBRAS, vol. 13, pp. 269–300.

Zhang, C., Santosh, M., Luo, Q., Jiang, S., Liu, L. & Liu, D. 2019, ‘Impact of residual zircon on Nd-Hf isotope decoupling during sediment recycling in subduction zone’, Geoscience Frontiers, vol. 10, no. 1, pp. 241-251, DOI:10.1016/j.gsf.2018.03.015

Zindler, A. & Hart, S.R. 1986, ‘Chemical geodynamics’, Annual Review of Earth and Planetary Sciences, vol. 14, pp. 493–571, DOI:10.1146/annurev.ea.14.050186.002425

Downloads

Published

2026-01-16

How to Cite

Maia Teodoro, M. A. (2026) “New Insights into Nd-Hf Isotopic Data and U-Pb Ages from the Tanguá Massif: Implications for the Magmatic Evolution”, Anuário do Instituto de Geociências. Rio de Janeiro, BR, 49. doi: 10.11137/1982-3908_2026_49_65682.