Soil Moisture Estimation by GNSS-IR from Active Stations: Case Study – RBMC/IBGE, UFPR Station
DOI:
https://doi.org/10.11137/1982-3908_2025_48_65911Keywords:
Interferometric reflectometry, Geodetic remote sensing, Hydrological cycleAbstract
The Earth is a dynamic planet subject to numerous natural phenomena and processes that human activities have intensified. Monitoring variables associated with these phenomena is essential. Soil moisture, for example, plays a crucial role in climate systems, agriculture, and the hydrological cycle. The Global Navigation Satellite Systems (GNSS) is one of the Geodesy tools used for monitoring the Earth, through which the GNSS Interferometric Reflectometry (GNSS-IR) technique can be employed to estimate soil moisture. In this study, the UFPR station, part of the Brazilian Continuous Monitoring Network of GNSS Systems (RBMC) was selected for investigation. A Python script was developed to automate the preparation of GNSS data from any RBMC station. Different processing configurations of a reflectometric algorithm were evaluated, resulting in a set of time series of soil moisture for 2022. Results indicate that configurations adapted to the station’s local conditions contribute to the enhancement of the results. The best signal among the 24 evaluated was the
precise signal from the L2 frequency of GLONASS (RS2P). Peaks in precipitation were aligned with peaks in soil moisture, with soil moisture ranging from 0 to 0.35 m³/m³. The results support the development of a methodology for monitoring soil moisture in the vicinity of GNSS-RBMC stations that meet GNSS-IR requirements, expanding the potential applications of this network.
References
Acharya, T.D. & Lee, D.H. 2019, ‘Remote sensing and geospatial technologies for sustainable development: A review of applications’, Sensors and Materials, vol. 31, n. 11, pp. 3931-45.
Altamimi, Z., Rebischung, P.P., Métivier, L. & Collilieux, X. 2016, ‘ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions’, Journal of Geophysical Research: Solid Earth, vol. 121, n. 8, pp. 6109-31.
Altamimi, Z., Rebischung, P.P., Métivier, L. & Collilieux, X. 2021, ‘ITRF2020: An enhanced realization of the International Terrestrial Reference Frame’, Journal of Geophysical Research: Solid Earth, vol. 126, n. 10, e2020JB021490.
Arroyo, A.A., Camps, A., Aguasca, A., Forte, G.F., Monerris, A., Rüdiger, C., Walker, J.P., Park, H., Pasucal, D. & Onrubia, R. 2014, ‘Dual-polarization GNSS-R interference pattern technique for soil moisture mapping’, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 7, n. 5, pp. 1533-44.
Awange, J.L. & Kyalo Kiema, J.B. 2013, Environmental Geoinformatics, Springer Berlin Heidelberg, Berlin.
Babaeian, E., Sadeghi, M., Jones, S.B., Montzka, C., Vereecken, H. & Tuller, M. 2019, ‘Ground, Proximal, and Satellite Remote Sensing of Soil Moisture’, Reviews of Geophysics, vol. 57, n. 2, pp. 530-616.
Chew, C.C., Small, E.E., Larson, K.M., Zavorotny, V.U. 2014, ‘Effects of near-surface soil moisture on GPS SNR data: Development of a retrieval algorithm for soil moisture’, IEEE Transactions on Geoscience and Remote Sensing, vol. 52, n. 1, pp. 537-43.
Edokossi, K., Calabia, A., Jin, S. & Molina, I. 2020, ‘Gnss-reflectometry and remote sensing of soil moisture: A review of measurement techniques, methods, and applications’, Remote Sensing, vol. 12, n. 4.
Entekhabi, D., Njoku, E.G., O’neill, P.E., Kellogg K.H., Crow, W., Edelstein, W.N., Entin, J., Goodman, S.D., Jackson, T.J., Johnson, J.T., Kimball, J.S., Piepmeier, J.R., Koste, R.D., Martin, N., Mcdonald, K., Moghaddam, M., Moran, S., Reichle, R., Shi, J., Spencer, M.W., Thurman, S., Tsang, L. & van Zyl, J. 2010, ‘The soil moisture active passive (SMAP) mission’, Proceedings of the IEEE, vol. 98, n. 5, pp. 704-16.
Euriques, J.F. 2019, ‘Determinação da umidade do solo por meio da técnica de Refletometria GNSS – Primeiros resultados no Brasil’, Master´s thesis, Universidade Federal do Paraná.
Euriques, J.F., Krueger, C.P., Machado, W.C., Sapucci, L.F. & Geremia-Nievinski, F. 2021, ‘Soil Moisture Estimation with GNSS Reflectometry: A Conceptual Review’, Revista Brasileira de Cartografia, vol. 73, n. 2, pp. 413-34.
Georgiadou, P.Y. & Kleusberg, A. 1988, ‘On Carrier Signal Multipath Effects in Relative GPS Positioning’, Map Collector, vol. 13, pp. 172-79.
Geremia-Nievinski, F. & Hobiger, T. 2019, ‘Site guidelines for multi-purpose GNSS reflectometry stations’, Zenodo.
Hatanaka, Y. 2008, ‘A Compression Format and Tools for GNSS Observation Data’, Bulletin of the Geospatioal Information Authority of Japan, vol. 55, pp. 21-30.
Hillel, D. 1998, Environmental Soil Physics, Academic Press, San Diego.
Instituto Brasileiro de Geografia e Estatística – IBGE & RBMC – Rede Brasileira de Monitoramento Contínuo dos Sistemas GNSS 2024, ‘ Relatório de Informação de Estação UFPR – Curitiba’, viewed 10 June 2024, <https://geoftp.ibge.gov.br/informacoes_sobre_posicionamento_geodesico/rbmc/relatorio/Descritivo_UFPR.pdf>.
International GNSS Service – IGS 2022, ‘Adoption of IGS20 Reference Frame’, viewed 10 June 2024, <https://igs.org>.
Instituto Nacional de Meteorologia – INMET 2023, ‘Climatologia: Dados e informações climáticas’, viewed 10 June 2024, <http://www.inmet.gov.br>.
Jin, S., Cardellach, E. & Xie, F. 2014, Remote Sensing and Digital Image Processing: Theory, Methods and Applications, Springer International Publishing, Switzerland.
Larson, K.M. 2024, ‘Gnssrefl: An open source software package in python for GNSS interferometric reflectometry applications’, GPS Solut, vol. 28, no. 165.
Larson, K.M., Braun, J.J., Small, E.E., Zavorotny, V.U., Senior Member, IEEE, Gutmann, E.D. & Bilich, A.l. 2010, ‘GPS Multipath and Its Relation to Near-Surface Soil Moisture Content’, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 3, no. 1, pp. 91-9.
Larson, K.M. &Nievinski, F.G. 2013, ‘GPS snow sensing: Results from the EarthScope Plate Boundary Observatory’, GPS Solutions, vol. 17, no. 1, pp. 41-52.
Larson, K. M., Small, E. E., Gutmann, E., Bilich, A., Axelrad, P. & Braun, J.J. 2008a, ‘Using GPS multipath to measure soil moisture fluctuations: Initial results’, GPS Solutions, vol. 12, no. 3, pp. 173-77.
Larson, K.M., Small, E.E., Gutmann, E.D., Bilich, A., Braun, J.J & Zavorotny, V.U. 2008b, ‘Use of GPS receivers as a soil moisture network for water cycle studies’, Geophysical Research Letters, vol. 35, no. 24.
Leick, A. 1995, GPS Satellite Surveying, 2nd edn, John Wiley & Sons, New York.
Li, Y., Yu, K., Li, J., Jin, T., Chang, X., Zhang, Q. & Yang, S. 2022, ‘Measuring soil moisture with refracted GPS signals’, IEEE Geosci Remote Sens Lett, vol. 19, pp.1-5.
Martín, A., Ibáñez, S., Baixauli, C., Blanc, S. & Julián, A.B.A. 2020, ‘Multi-constellation GNSS interferometric reflectometry with mass-market sensors as a solution for soil moisture monitoring’, vol. 24, no. 7, pp. 3573-82.
Nischan, T. 2016, GFZRNX - RINEX GNSS Data Conversion and Manipulation Toolbox, viewed 10 June 2024, <https://doi.org/10.5880/GFZ.1.1.2016.002>.
Nievinski, F.G. & Larson, K.M. 2014a, ‘Forward modeling of GPS multipath for near-surface reflectometry and positioning applications’, GPS Solutions, vol. 18, no. 2, pp. 309-22.
Nievinski, F.G. & Larson, K.M. 2014b, ‘An open source GPS multipath simulator in Matlab/Octave’, GPS Solutions, vol. 18, no. 3, pp. 473-81.
Nievinski, F.G. & Larson, K.M. 2014c, ‘Inverse modeling of GPS multipath for snow depth estimation - Part I: Formulation and simulations’, IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 10, pp. 6555-63.
Nievinski, F.G. & Larson, K.M. 2014d, ‘Inverse modeling of GPS multipath for snow depth estimation - Part II: Application and validation’, IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 10, pp. 6564-73.
Nievinski, F.G., Silva, M.F.E., Boniface, K. & Monico, J.F.G. 2016, ‘GPS Diffractive Reflectometry: Footprint of a Coherent Radio Reflection Inferred from the Sensitivity Kernel of Multipath SNR’, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 9, no. 10, pp. 4884-91.
Ochsner, T.E., Cosh, M.H., Cuenca, R.H., Dorigo, W.A., Draper, C.S., Hagimoto, Y., Kerr, T.H., Larson, K.M., Njoku, E.G., Small, E.E. & Zreda, M. 2013, ‘State of the Art in Large-Scale Soil Moisture Monitoring’, Soil Science Society of America Journal, vol. 77, no. 6, pp. 1888-923.
Paganini, M., Petiteville, I., Ward, S., Dyke, G., Steventon, M. & Harry, J. 2018, Satellite Earth Observations in support of the Sustainable Development Goals, European Space Agency (ESA), Paris.
Plag, H.P. & Pearlman, M. (ed.). 2009, Global Geodeic Observing System, Springer, Switzerland.
Robinson, D.A., Campbell, C.S., Hopmans, J.W., Hornbuckle, B.K., Jones, S.B., Knight, R., Ogden, F., Selker, J. & Wendroth, O. 2008, ‘Soil Moisture Measurement for Ecological and Hydrological Watershed-Scale Observatories: A Review’, Vadose Zone Journal, vol. 7, no. 1, pp. 358-89.
Rodriguez-Alvarez, N., Bosch-Lluis, X., Camps, A., Vall-llossera M., Valencia, E., Marchn-Hernandes, J.F. & Ramoz-Perrez, I. 2009, ‘Soil moisture retrieval using GNSS-R techniques: Experimental results over a bare soil field’, IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 11, pp. 3616-24.
Roussel, N., Frappart, F., Ramillien, G., Darrozes, J., Baup, F., Lestarquit, L. & Ha, M.C. 2016, ‘Detection of Soil Moisture Variations Using GPS and GLONASS SNR Data for Elevation Angles Ranging from 2° to 70°’, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 9, no. 10, pp. 4781-94.
Roussel, N., Ramillien, G., Frappart, F., Darrozes, J., Gay, A., Biancale, R., Striebig, N., Hanquiez, V., Bertin, X. & Allain, D. 2015, ‘Sea level monitoring and sea state estimate using a single geodetic receiver’, Remote Sensing of Environment, vol. 171, pp. 261-77.
Seeber, G. 2003, Satellite Geodesy: Foundations, Methods, and Applications, 2nd edn, Walter de Gruyter, New York.
Seneviratne, S.I., Corti, T., Davin, E.L., Hirschi, M., Jaeger, E.B., Lehner, I., Orlowsky, B. & Teuling, A. 2010, ‘Investigating soil moisture-climate interactions in a changing climate: A review’, Earth-Science Reviews, vol. 99, no. 3-4, pp. 125-61.
Simon, P., Hollingsworth, A., Carli, B., Källén, E., Rott, H., Partington, K.C., Moreno, J., Schaepman, M., Mauser, W., Flemming, N., Visbeck, M., Vermeersen, B.L.A., Friis-Christensen, F., Johannessen, J.A., Kelder, H., Kosuth, P., Nadia, P., Quegan, S. & Sobrinho, J. 2006, The Changing Earth : New scientific challenges for ESA’s Living Planet Programme, ESA Publications Division, Paris.
Tabibi, S., Nievinski, F.G. & Van Dam, T. 2017, ‘Statistical Comparison and Combination of GPS, GLONASS, and Multi-GNSS Multipath Reflectometry Applied to Snow Depth Retrieval’, IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 7, pp. 3773-85.
Tabibi, S., Nievinski, F.G., Van Dam, T. & Monico, J.F.G. 2015, ‘Assessment of modernized GPS L5 SNR for ground-based multipath reflectometry applications’, Advances in Space Research, vol. 55, no. 4, pp. 1104-16.
Teunissen, P.J.G. & Montenbruck, O. (ed.). 2017, Springer Handbook of Global Navigation Satellite Systems, Springer International Publishing, Switzerland.
Vey, S., Güntner, A., Wickert, J., Blume, T. & Ramatschi, M. 2016, ‘Long-term soil moisture dynamics derived from GNSS interferometric reflectometry: a case study for Sutherland, South Africa’, GPS Solutions, vol. 20, no. 4, pp. 641-54.
Wang, Q., Zheng, Y., Xu, S., Zhou, G. & Yu, J. 2022, ‘In situ mesoscale soil moisture content monitoring based on global navigation satellite system interferometric reflectometry and ensemble modeling’, Journal of Applied Remote Sensing, vol.16, no. 02, pp.1-17.
Wei, H., Yang, X., Pan, Y. & Shen, F. 2023, ‘GNSS-IR Soil Moisture Inversion Derived from Multi-GNSS and Multi-Frequency Data Accounting for Vegetation Effects’, Remote Sensing, vol.15 no. 22.
Wu, X., Ma, W., Xia, J., Bai, W., Jin, S. & Calabia, A. 2021, ‘Spaceborne GNSS‐R soil moisture retrieval: Status, development opportunities, and challenges’, Remote Sensing, vol. 13, no. 1, pp. 1-24.
Yan, S. H., Zhang, N., Chen, N.C. & Gong, J.Y. 2018, ‘Feasibility of using signal strength indicator data to estimate soil moisture based on GNSS interference signal analysis’, Remote Sensing Letters, vol. 9, no. 1, pp. 61-70.
Yang, T., Wan, W., Chen, X., Chu, T., Qiao, Z., Liang, H., Wei, J., Wang, G. & Hong, Y. 2019, ‘Land surface characterization using BeiDou signal-to-noise ratio observations’, GPS Solutions, vol. 23, no. 2, pp. 1-12.
Yang, T., Wan, W., Chen, X., Chu, T. & Hong, Y. 2017, ‘Using BDS SNR observations to measure near-surface soil moisture fluctuations: Results from low vegetated surface’, IEEE Geoscience and Remote Sensing Letters, vol. 14, no. 8, pp. 1308-12.
Zavorotny, V.U., Gleason, S., Cardellach, E. & Camps, A. 2014, ‘Tutorial on remote sensing using GNSS bistatic radar of opportunity’, IEEE Geoscience and Remote Sensing Magazine, vol. 2, no. 4, pp. 8-45.
Zavorotny, V.U. & Voronovich, A.G. 2000, ‘Scattering of GPS signals from the ocean with wind remote sensing application’, IEEE Transactions on Geoscience and Remote Sensing, vol. 38, no. 2, pp. 951-64.
Zhang, S., Roussel, N., Boniface, K., Ha, M.C., Frapart, F., Darrozes, J., Baup, F. & Calvet, J.-C. 2017, ‘Use of reflected GNSS SNR data to retrieve either soil moisture or vegetation height from a wheat crop’, Hydrology and Earth System Sciences, vol. 21, no. 9, pp. 4767-84.
Zhang, X., Nie, S., Zhang, C., Zhang, J. & Cai, H. 2021, ‘Soil moisture estimation based on triple-frequency multipath error’, International Journal of Remote Sensing, vol. 42, no. 15, pp. 5953-68.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
This journal is licensed under a Creative Commons — Attribution 4.0 International — CC BY 4.0, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.