Evaluation of the Use of Amazônia-1 and CBERS-4 Images in LULC Mapping Combined with Machine Learning Classifiers
DOI:
https://doi.org/10.11137/1982-3908_2026_49_68883Keywords:
Watershed, Machine Learning, Remote SensingAbstract
Rapid changes in land use and land cover in many parts of the world have placed enormous pressure on the environmental conservation of river basins. In Brazil, continuous monitoring of these changes using national satellite images has become crucial and accessible for the management and monitoring of water resources. Several studies have employed remote sensing and data science tools to investigate changes in land use and land cover, using different machine learning classifiers due to their operational efficiency and high robustness. Therefore, it is critical to evaluate and compare the performance of different machine learning classifiers for accurate mapping of land use and land cover in environmentally unstable areas. The main objective of this study was to perform an accuracy analysis of land use and land cover mapping, integrating the performance of four different classifiers: K-means, Object Oriented Analysis (OBIA), Random Forest and Support Vector Machines (SVM), using images from the Amazônia-1 and CBERS-4 satellites in the diffuse hydrographic basin of the Boa Esperança Dam, in Piauí, Brazil. According to the results, SVM was the best performing classifier, achieving a maximum overall accuracy (IoU) of 89.38%, while K-means presented values below 70%. OBIA stood out for CBERS-4, while Amazônia-1 performed well in all supervised classifiers. The K means algorithm showed the lowest performance, with emphasis on CBERS-4, with an estimate of 43.57% driven by the low values seen for the soybean and pasture classes.
Downloads
References
Ahmad, M., Peng, T., Awan, A. & Ahmed, Z. 2023, ‘Policy framework considering resource curse, renewable energy transition, and institutional issues: Fostering sustainable development and sustainable natural resource consumption practices’, Resources Policy, vol. 86, 104173, DOI: 10.1016/j.resourpol.2023.104173
Alcaras, E., Costantino, D., Guastaferro, F., Parente, C. & Pepe, M. 2022, ‘Normalized Burn Ratio Plus (NBR+): A New Index for Sentinel-2 Imagery’, Remote Sensing, vol. 14, no. 7, 1727, DOI: 10.3390/rs14071727
ANA (Agência Nacional de Águas). 2012, Bacias Hidrográficas Ottocodificadas (Níveis Otto 1–7), Catálogo de Metadados da ANA, https://metadados.snirh.gov.br/geonetwork/srv/api/records/b228d007-6d68-46e5-b30d-a1e191b2b21f.
Aziz, G., Minallah, N., Saeed, A., Frnda, J. & Khan, W. 2024, ‘Remote sensing based forest cover classification using machine learning’, Scientific Reports, vol. 14, no. 1, DOI: 10.1038/s41598-023-50863-1.
Bao, F., Huang, K. & Wu, S. 2023, ‘The retrieval of aerosol optical properties based on a random forest machine learning approach: Exploration of geostationary satellite images’, Remote Sensing of Environment, vol. 286, 113426, DOI: 10.1016/j.rse.2022.113426
Barbosa, C., Novo, E. & Martins, V. 2019, Sensoriamento Remoto: Introdução ao Princípios e Aplicações de Sistemas Aquáticos, 1 ed, http://www.dpi.inpe.br/labisa/livro/res/conteudo.pdf
Chen, H., Li, H., Liu, Z., Zhang, C., Zhang, S. & Atkinson, P.M. 2023, ‘A novel Greenness and Water Content Composite Index (GWCCI) for soybean mapping from single remotely sensed multispectral images’, Remote Sensing of Environment, vol. 295, 113679, DOI: 10.1016/j.rse.2023.113679
Costa, O.B. da, Matricardi, E.A.T., Pedlowski, M.A., Cochrane, M.A. & Fernandes, L.C. 2017, ‘Spatiotemporal mapping of soybean plantations in Rondônia, Western Brazilian Amazon’, Acta Amazonica, vol. 47, no. 1, pp. 29–38, DOI: 10.1590/1809-4392201601544
Cunha, A.C., Almeida, R., Tanaka, A.A., Goes, B.C. & Putti, F.F. 2020, ‘Influence of the estimated global solar radiation on the reference evapotranspiration obtained through the Penman-Monteith FAO 56 method’, Agricultural Water Management, vol. 243, 106491, DOI: 10.1016/j.agwat.2020.106491
Feng, C., Zhang, W., Deng, H., Dong, L., Zhang, H., Tang, L., Zheng, Y. & Zhao, Z. 2023, ‘A Combination of OBIA and Random Forest Based on Visible UAV Remote Sensing for Accurately Extracted Information about Weeds in Areas with Different Weed Densities in Farmland’, Remote Sensing, vol. 15, no. 19, 4696, DOI: 10.3390/rs15194696
Fernandes Junior, F.E., Nonato, L.G., Ranieri, C.M. & Ueyama, J. 2021, ‘Memory-Based Pruning of Deep Neural Networks for IoT Devices Applied to Flood Detection’, Sensors, vol. 21, no. 22, 7506, DOI: 10.3390/s21227506
Fonseca, L.M.G., Körting, T.S., Bendini, H. do N., Girolamo-Neto, C.D., Neves, A.K., Soares, A.R., Taquary, E.C. & Maretto, R.V. 2021, ‘Pattern Recognition and Remote Sensing techniques applied to Land Use and Land Cover mapping in the Brazilian Savannah’, Pattern Recognition Letters, vol. 148, pp. 54–60, DOI: 10.1016/j.patrec.2021.04.028
Giglio, L., Boschetti, L., Roy, D.P., Humber, M.L. & Justice, C.O. 2018, ‘The Collection 6 MODIS burned area mapping algorithm and product’, Remote Sensing of Environment, vol. 217, pp. 72–85, DOI: 10.1016/j.rse.2018.08.005
Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X. & Ferreira, L.G. 2002, ‘Overview of the radiometric and biophysical performance of the MODIS vegetation indices’, Remote Sensing of Environment, vol. 83, pp. 195–213, DOI: 10.1016/s0034-4257(02)00096-2
ICMBio (Instituto Chico Mendes de Conservação da Biodiversidade). 2022, http://www.icmbio.gov.br.
INPE (Instituto Nacional de Pesquisas Espaciais). 2024, Catálogo de Imagens do INPE, Inpe.br, https://www.dgi.inpe.br/catalogo/explore
Liu, Q., Huang, C., Shi, Z. & Zhang, S. 2020, ‘Probabilistic River Water Mapping from Landsat-8 Using the Support Vector Machine Method’, Remote Sensing, vol. 12, no. 9, 1374, DOI: 10.3390/rs12091374
Luciano, A.C. dos S., Campagnuci, B.C.G. & le Maire, G. 2022, ‘Mapping 33 years of sugarcane evolution in São Paulo state, Brazil, using Landsat imagery and generalized space-time classifiers’, Remote Sensing Applications: Society and Environment, vol. 26, 100749, DOI: 10.1016/j.rsase.2022.100749
Maxwell, A.E. & Warner, T.A. 2020, ‘Thematic Classification Accuracy Assessment with Inherently Uncertain Boundaries: An Argument for Center-Weighted Accuracy Assessment Metrics’, Remote Sensing, vol. 12, no. 12, 1905, DOI: 10.3390/rs12121905
Nasir, S.M., Kamran, K.V., Blaschke, T. & Karimzadeh, S. 2022, ‘Change of land use / land cover in Kurdistan Region of Iraq: A semi-automated object-based approach’, Remote Sensing Applications: Society and Environment, vol. 26, 100713, DOI: 10.1016/j.rsase.2022.100713
Oldoni, L.V., Sanches, I.D., Picoli, M.C.A., Hugo, V. & Adami, M. 2022, ‘Geometric accuracy assessment and a framework for automatic sub-pixel registration of WFI images from CBERS-4, CBERS-4A, and Amazonia-1 satellites over Brazil’, Remote Sensing Applications: Society and Environment, vol. 28, 100844, DOI: 10.1016/j.rsase.2022.100844
Oliveira, V.Q. de, Pereira, A.M.L. & Parente, R.R. 2017, ‘A piscicultura na hidrelétrica Boa Esperança’, http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1102127
Pacheco, A. da P., Junior, J.A. da S., Ruiz-Armenteros, A.M. & Henriques, R.F.F. 2021, ‘Assessment of k-Nearest Neighbor and Random Forest Classifiers for Mapping Forest Fire Areas in Central Portugal Using Landsat-8, Sentinel-2, and Terra Imagery’, Remote Sensing, vol. 13, no. 7, 1345, DOI: 10.3390/rs13071345
Pinto, C., Ponzoni, F., Castro, R., Leigh, L., Mishra, N., Aaron, D. & Helder, D. 2016, ‘First in-Flight Radiometric Calibration of MUX and WFI on-Board CBERS-4’, Remote Sensing, vol. 8, no. 5, 405, DOI: 10.3390/rs8050405
Rajendiran, N. & Kumar, L.S. 2022, ‘Pixel Level Feature Extraction and Machine Learning Classification for Water Body Extraction’, Arabian Journal for Science and Engineering, DOI: 10.1007/s13369-022-07389-x
Silva Júnior, J.A. da. 2024, ‘Avaliação de Índices Espectrais da Água Utilizando uma Cena Landsat-9: um Estudo de Caso em uma Região Semiárida’, Revista Brasileira de Cartografia, vol. 76, DOI: 10.14393/rbcv76n0a-72559
Silva Júnior, J.A. da & Pacheco, A. da P. 2023, ‘Uso do classificador Support Vector Machines para o mapeamento da cobertura do solo usando imagens de Sensoriamento Remoto’, Revista Brasileira de Geografia Física, vol. 16, no. 3, pp. 1304–1319, DOI: 10.26848/rbgf.v16.3.p1304-1319
Souza, C.M., Shimbo, J.Z., Rosa, M.R., Parente, L.L., Alencar, A.A., Rudorff, B.F.T., Hasenack, H., Matsumoto, M., Ferreira, L.G., Souza-Filho, P.W.M., de Oliveira, S.W., Rocha, W.F., Fonseca, A.V., Marques, C.B., Diniz, C.G., Costa, D., Monteiro, D., Rosa, E.R., Vélez-Martin, E. & Weber, E.J. 2020, ‘Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine’, Remote Sensing, vol. 12, no. 17, 2735, DOI: 10.3390/rs12172735
Sun, Y., Xiao, K., Wang, S. & Lv, Q. 2021, ‘An evolutionary many-objective algorithm based on decomposition and hierarchical clustering selection’, Applied Intelligence, vol. 52, no. 8, pp. 8464–8509, DOI: 10.1007/s10489-021-02669-9
Talukdar, S., Singha, P., Shahfahad, Mahato, S., Praveen, B. & Rahman, A. 2020, ‘Dynamics of ecosystem services (ESs) in response to land use land cover (LU/LC) changes in the lower Gangetic plain of India’, Ecological Indicators, vol. 112, 106121, DOI: 10.1016/j.ecolind.2020.106121
Tejasree, G. & Agilandeeswari, L. 2024, ‘Land use/land cover (LULC) classification using deep-LSTM for hyperspectral images’, The Egyptian Journal of Remote Sensing and Space Science, vol. 27, no. 1, pp. 52–68, DOI: 10.1016/j.ejrs.2024.01.004
Vrabel, J.C., Stensaas, G.L., Anderson, C., Christopherson, J., Kim, M. & Park, S. 2022, ‘System characterization report on the Amazônia-1 multispectral sensor’, Open-File Report, DOI: 10.3133/ofr20211030n
Wang, Y., Sun, Y., Cao, X., Wang, Y., Zhang, W. & Cheng, X. 2023, ‘A review of regional and Global scale Land Use/Land Cover (LULC) mapping products generated from satellite remote sensing’, ISPRS Journal of Photogrammetry and Remote Sensing, vol. 206, pp. 311–334, DOI: 10.1016/j.isprsjprs.2023.11.014
Yuan, X., Tian, J. & Reinartz, P. 2023, ‘Learning-Based Near-Infrared Band Simulation with Applications on Large-Scale Landcover Classification’, Sensors (Basel, Switzerland), vol. 23, no. 9, 4179, DOI: 10.3390/s23094179
Zafar, Z., Zubair, M., Zha, Y., Mehmood, M.S., Rehman, A., Fahd, S. & Nadeem, A.A. 2024, ‘Predictive modeling of regional carbon storage dynamics in response to land use/land cover changes: An InVEST-based analysis’, Ecological Informatics, vol. 82, 102701, DOI: 10.1016/j.ecoinf.2024.102701
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
This journal is licensed under a Creative Commons — Attribution 4.0 International — CC BY 4.0, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.











