Evaluation of the Use of Amazônia-1 and CBERS-4 Images in LULC Mapping Combined with Machine Learning Classifiers

Authors

DOI:

https://doi.org/10.11137/1982-3908_2026_49_68883

Keywords:

Watershed, Machine Learning, Remote Sensing

Abstract

Rapid changes in land use and land cover in many parts of the world have placed enormous pressure on the environmental conservation of river basins. In Brazil, continuous monitoring of these changes using national satellite images has become crucial and accessible for the management and monitoring of water resources. Several studies have employed remote sensing and data science tools to investigate changes in land use and land cover, using different machine learning classifiers due to their operational efficiency and high robustness. Therefore, it is critical to evaluate and compare the performance of different machine learning classifiers for accurate mapping of land use and land cover in environmentally unstable areas. The main objective of this study was to perform an accuracy analysis of land use and land cover mapping, integrating the performance of four different classifiers: K-means, Object Oriented Analysis (OBIA), Random Forest and Support Vector Machines (SVM), using images from the Amazônia-1 and CBERS-4 satellites in the diffuse hydrographic basin of the Boa Esperança Dam, in Piauí, Brazil. According to the results, SVM was the best performing classifier, achieving a maximum overall accuracy (IoU) of 89.38%, while K-means presented values below 70%. OBIA stood out for CBERS-4, while Amazônia-1 performed well in all supervised classifiers. The K means algorithm showed the lowest performance, with emphasis on CBERS-4, with an estimate of 43.57% driven by the low values seen for the soybean and pasture classes.

Downloads

Download data is not yet available.

Author Biography

Juarez Antônio da Silva Júnior, Universidade Federal de Pernambuco

Mestre em Engenharia Civil com ênfase em Recursos Hídricos e Tecnologia Ambiental (PPGEC-UFPE) e Engenheiro Cartógrafo e Agrimensor pela Universidade Federal de Pernambuco (UFPE). Sou especialista em Geoprocessamento e, Sensoriamento Remoto com ênfase em qualidade de dados geoespaciais, cartografia e monitoramento ambiental. No campo profissional, atuei nas áreas de licenciamento ambiental, geoprocessamento, sistemas de observação da Terra, topografia e cadastro técnico de redes de saneamento.

References

Ahmad, M., Peng, T., Awan, A. & Ahmed, Z. 2023, ‘Policy framework considering resource curse, renewable energy transition, and institutional issues: Fostering sustainable development and sustainable natural resource consumption practices’, Resources Policy, vol. 86, 104173, DOI: 10.1016/j.resourpol.2023.104173

Alcaras, E., Costantino, D., Guastaferro, F., Parente, C. & Pepe, M. 2022, ‘Normalized Burn Ratio Plus (NBR+): A New Index for Sentinel-2 Imagery’, Remote Sensing, vol. 14, no. 7, 1727, DOI: 10.3390/rs14071727

ANA (Agência Nacional de Águas). 2012, Bacias Hidrográficas Ottocodificadas (Níveis Otto 1–7), Catálogo de Metadados da ANA, https://metadados.snirh.gov.br/geonetwork/srv/api/records/b228d007-6d68-46e5-b30d-a1e191b2b21f.

Aziz, G., Minallah, N., Saeed, A., Frnda, J. & Khan, W. 2024, ‘Remote sensing based forest cover classification using machine learning’, Scientific Reports, vol. 14, no. 1, DOI: 10.1038/s41598-023-50863-1.

Bao, F., Huang, K. & Wu, S. 2023, ‘The retrieval of aerosol optical properties based on a random forest machine learning approach: Exploration of geostationary satellite images’, Remote Sensing of Environment, vol. 286, 113426, DOI: 10.1016/j.rse.2022.113426

Barbosa, C., Novo, E. & Martins, V. 2019, Sensoriamento Remoto: Introdução ao Princípios e Aplicações de Sistemas Aquáticos, 1 ed, http://www.dpi.inpe.br/labisa/livro/res/conteudo.pdf

Chen, H., Li, H., Liu, Z., Zhang, C., Zhang, S. & Atkinson, P.M. 2023, ‘A novel Greenness and Water Content Composite Index (GWCCI) for soybean mapping from single remotely sensed multispectral images’, Remote Sensing of Environment, vol. 295, 113679, DOI: 10.1016/j.rse.2023.113679

Costa, O.B. da, Matricardi, E.A.T., Pedlowski, M.A., Cochrane, M.A. & Fernandes, L.C. 2017, ‘Spatiotemporal mapping of soybean plantations in Rondônia, Western Brazilian Amazon’, Acta Amazonica, vol. 47, no. 1, pp. 29–38, DOI: 10.1590/1809-4392201601544

Cunha, A.C., Almeida, R., Tanaka, A.A., Goes, B.C. & Putti, F.F. 2020, ‘Influence of the estimated global solar radiation on the reference evapotranspiration obtained through the Penman-Monteith FAO 56 method’, Agricultural Water Management, vol. 243, 106491, DOI: 10.1016/j.agwat.2020.106491

Feng, C., Zhang, W., Deng, H., Dong, L., Zhang, H., Tang, L., Zheng, Y. & Zhao, Z. 2023, ‘A Combination of OBIA and Random Forest Based on Visible UAV Remote Sensing for Accurately Extracted Information about Weeds in Areas with Different Weed Densities in Farmland’, Remote Sensing, vol. 15, no. 19, 4696, DOI: 10.3390/rs15194696

Fernandes Junior, F.E., Nonato, L.G., Ranieri, C.M. & Ueyama, J. 2021, ‘Memory-Based Pruning of Deep Neural Networks for IoT Devices Applied to Flood Detection’, Sensors, vol. 21, no. 22, 7506, DOI: 10.3390/s21227506

Fonseca, L.M.G., Körting, T.S., Bendini, H. do N., Girolamo-Neto, C.D., Neves, A.K., Soares, A.R., Taquary, E.C. & Maretto, R.V. 2021, ‘Pattern Recognition and Remote Sensing techniques applied to Land Use and Land Cover mapping in the Brazilian Savannah’, Pattern Recognition Letters, vol. 148, pp. 54–60, DOI: 10.1016/j.patrec.2021.04.028

Giglio, L., Boschetti, L., Roy, D.P., Humber, M.L. & Justice, C.O. 2018, ‘The Collection 6 MODIS burned area mapping algorithm and product’, Remote Sensing of Environment, vol. 217, pp. 72–85, DOI: 10.1016/j.rse.2018.08.005

Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X. & Ferreira, L.G. 2002, ‘Overview of the radiometric and biophysical performance of the MODIS vegetation indices’, Remote Sensing of Environment, vol. 83, pp. 195–213, DOI: 10.1016/s0034-4257(02)00096-2

ICMBio (Instituto Chico Mendes de Conservação da Biodiversidade). 2022, http://www.icmbio.gov.br.

INPE (Instituto Nacional de Pesquisas Espaciais). 2024, Catálogo de Imagens do INPE, Inpe.br, https://www.dgi.inpe.br/catalogo/explore

Liu, Q., Huang, C., Shi, Z. & Zhang, S. 2020, ‘Probabilistic River Water Mapping from Landsat-8 Using the Support Vector Machine Method’, Remote Sensing, vol. 12, no. 9, 1374, DOI: 10.3390/rs12091374

Luciano, A.C. dos S., Campagnuci, B.C.G. & le Maire, G. 2022, ‘Mapping 33 years of sugarcane evolution in São Paulo state, Brazil, using Landsat imagery and generalized space-time classifiers’, Remote Sensing Applications: Society and Environment, vol. 26, 100749, DOI: 10.1016/j.rsase.2022.100749

Maxwell, A.E. & Warner, T.A. 2020, ‘Thematic Classification Accuracy Assessment with Inherently Uncertain Boundaries: An Argument for Center-Weighted Accuracy Assessment Metrics’, Remote Sensing, vol. 12, no. 12, 1905, DOI: 10.3390/rs12121905

Nasir, S.M., Kamran, K.V., Blaschke, T. & Karimzadeh, S. 2022, ‘Change of land use / land cover in Kurdistan Region of Iraq: A semi-automated object-based approach’, Remote Sensing Applications: Society and Environment, vol. 26, 100713, DOI: 10.1016/j.rsase.2022.100713

Oldoni, L.V., Sanches, I.D., Picoli, M.C.A., Hugo, V. & Adami, M. 2022, ‘Geometric accuracy assessment and a framework for automatic sub-pixel registration of WFI images from CBERS-4, CBERS-4A, and Amazonia-1 satellites over Brazil’, Remote Sensing Applications: Society and Environment, vol. 28, 100844, DOI: 10.1016/j.rsase.2022.100844

Oliveira, V.Q. de, Pereira, A.M.L. & Parente, R.R. 2017, ‘A piscicultura na hidrelétrica Boa Esperança’, http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1102127

Pacheco, A. da P., Junior, J.A. da S., Ruiz-Armenteros, A.M. & Henriques, R.F.F. 2021, ‘Assessment of k-Nearest Neighbor and Random Forest Classifiers for Mapping Forest Fire Areas in Central Portugal Using Landsat-8, Sentinel-2, and Terra Imagery’, Remote Sensing, vol. 13, no. 7, 1345, DOI: 10.3390/rs13071345

Pinto, C., Ponzoni, F., Castro, R., Leigh, L., Mishra, N., Aaron, D. & Helder, D. 2016, ‘First in-Flight Radiometric Calibration of MUX and WFI on-Board CBERS-4’, Remote Sensing, vol. 8, no. 5, 405, DOI: 10.3390/rs8050405

Rajendiran, N. & Kumar, L.S. 2022, ‘Pixel Level Feature Extraction and Machine Learning Classification for Water Body Extraction’, Arabian Journal for Science and Engineering, DOI: 10.1007/s13369-022-07389-x

Silva Júnior, J.A. da. 2024, ‘Avaliação de Índices Espectrais da Água Utilizando uma Cena Landsat-9: um Estudo de Caso em uma Região Semiárida’, Revista Brasileira de Cartografia, vol. 76, DOI: 10.14393/rbcv76n0a-72559

Silva Júnior, J.A. da & Pacheco, A. da P. 2023, ‘Uso do classificador Support Vector Machines para o mapeamento da cobertura do solo usando imagens de Sensoriamento Remoto’, Revista Brasileira de Geografia Física, vol. 16, no. 3, pp. 1304–1319, DOI: 10.26848/rbgf.v16.3.p1304-1319

Souza, C.M., Shimbo, J.Z., Rosa, M.R., Parente, L.L., Alencar, A.A., Rudorff, B.F.T., Hasenack, H., Matsumoto, M., Ferreira, L.G., Souza-Filho, P.W.M., de Oliveira, S.W., Rocha, W.F., Fonseca, A.V., Marques, C.B., Diniz, C.G., Costa, D., Monteiro, D., Rosa, E.R., Vélez-Martin, E. & Weber, E.J. 2020, ‘Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine’, Remote Sensing, vol. 12, no. 17, 2735, DOI: 10.3390/rs12172735

Sun, Y., Xiao, K., Wang, S. & Lv, Q. 2021, ‘An evolutionary many-objective algorithm based on decomposition and hierarchical clustering selection’, Applied Intelligence, vol. 52, no. 8, pp. 8464–8509, DOI: 10.1007/s10489-021-02669-9

Talukdar, S., Singha, P., Shahfahad, Mahato, S., Praveen, B. & Rahman, A. 2020, ‘Dynamics of ecosystem services (ESs) in response to land use land cover (LU/LC) changes in the lower Gangetic plain of India’, Ecological Indicators, vol. 112, 106121, DOI: 10.1016/j.ecolind.2020.106121

Tejasree, G. & Agilandeeswari, L. 2024, ‘Land use/land cover (LULC) classification using deep-LSTM for hyperspectral images’, The Egyptian Journal of Remote Sensing and Space Science, vol. 27, no. 1, pp. 52–68, DOI: 10.1016/j.ejrs.2024.01.004

Vrabel, J.C., Stensaas, G.L., Anderson, C., Christopherson, J., Kim, M. & Park, S. 2022, ‘System characterization report on the Amazônia-1 multispectral sensor’, Open-File Report, DOI: 10.3133/ofr20211030n

Wang, Y., Sun, Y., Cao, X., Wang, Y., Zhang, W. & Cheng, X. 2023, ‘A review of regional and Global scale Land Use/Land Cover (LULC) mapping products generated from satellite remote sensing’, ISPRS Journal of Photogrammetry and Remote Sensing, vol. 206, pp. 311–334, DOI: 10.1016/j.isprsjprs.2023.11.014

Yuan, X., Tian, J. & Reinartz, P. 2023, ‘Learning-Based Near-Infrared Band Simulation with Applications on Large-Scale Landcover Classification’, Sensors (Basel, Switzerland), vol. 23, no. 9, 4179, DOI: 10.3390/s23094179

Zafar, Z., Zubair, M., Zha, Y., Mehmood, M.S., Rehman, A., Fahd, S. & Nadeem, A.A. 2024, ‘Predictive modeling of regional carbon storage dynamics in response to land use/land cover changes: An InVEST-based analysis’, Ecological Informatics, vol. 82, 102701, DOI: 10.1016/j.ecoinf.2024.102701

Downloads

Published

2026-01-23

How to Cite

Antônio da Silva Júnior, J. (2026) “Evaluation of the Use of Amazônia-1 and CBERS-4 Images in LULC Mapping Combined with Machine Learning Classifiers”, Anuário do Instituto de Geociências. Rio de Janeiro, BR, 49. doi: 10.11137/1982-3908_2026_49_68883.

Issue

Section

Environmental Sciences