Fire-Induced Thermal Alteration in Iron Meteorites: Metallographic Analysis of the 2018 Disaster at the National Museum of Rio de Janeiro
DOI:
https://doi.org/10.11137/1982-3908_2026_49_71839Keywords:
Fe–Ni alloys, Widmanstätten pattern, Thermal damage classificationAbstract
The fire that destroyed the main building of the National Museum of Rio de Janeiro (MN/UFRJ) on 2 September 2018 exposed one of the largest meteorite collections in the Southern Hemisphere to highly heterogeneous thermal conditions. Iron meteorites stored in different sectors of the building experienced markedly variable thermal stress, ranging from negligible heating to intense reheating beneath collapsed, thermally insulating debris. This study presents a detailed metallographic investigation of iron meteorites from the MN/UFRJ collection, aimed at identifying and characterizing fire-induced thermal alterations, distinguishing them from primary meteoritic features, and establishing a practical framework for damage documentation and classification. Comparative optical microscopy, SEM–EDS analyses, and Ni–P chemical profiling reveal a continuous sequence of diffusion driven microstructural modifications, including attenuation or loss of Neumann bands, recrystallization and fragmentation of kamacite, redistribution of Ni and P at metal interfaces, and partial destabilization of schreibersite. Based on these systematic patterns, a seven-level thermal damage classification (F0–F7) is proposed, correlating observable metallographic features with inferred temperature–time conditions, from pristine Widmanstätten structures to complete melting and resolidification of the metallic mass. The classification scheme is applied to the MN/UFRJ collection and incorporated into specimen records and physical labels, supporting both scientific interpretation and conservation planning. More broadly, the results demonstrate that even short-lived fire exposure can imprint diagnostic and quantifiable overprints on meteoritic microstructures, underscoring the necessity of recognizing and documenting anthropogenic thermal alteration when studying and preserving meteorite collections worldwide.
Downloads
References
Axon, H.J. 1963, ‘Destruction of the Widmanstätten structure in iron meteorites by laboratory heat treatment’, Nature, vol. 197, pp. 1074–5, DOI: 10.1038/1971074a0
Berwerth, F. 1914, Die Meteoriten in Sammlungen und ihre Geschichte.
Bland, P.A. & Artemieva, N.A. 2006, ‘The Rate of Small Impacts on Earth’, Meteoritics & Planetary Science, vol. 41, pp. 607–31, DOI: 10.1111/j.1945-5100.2006.tb00485.x
Bryson, J.F.J., Nichols, C.I.O., Herrero-Albillos, J., Kronast, F., Kasama, T., Alimadadi, H., van der Laan, G., Nimmo, F. & Harrison, R.J. 2015, ‘Long-lived magnetism from solidification-driven convection on the pallasite parent body’, Nature, vol. 517, pp. 472–5, DOI: 10.1038/nature14114
Buchwald, V.F. 1975, Handbook of Iron Meteorites: Their History, Distribution, Composition and Structure, 3 vols, University of California Press, Berkeley.
Buseck, P.R. 1969, ‘Phosphide from Meteorites: Barringerite, a New Iron-Nickel Mineral’, Science, vol. 165, pp. 169–71, DOI: 10.1126/science.165.3889.169
Choi, B.G., Ouyang, X. & Wasson, J.T. 1995, ‘Classification and origin of IAB and IIICD iron meteorites’, Geochimica et Cosmochimica Acta, vol. 59, no. 3, pp. 593–612.
Clarke, R.S. & Scott, E.R. D. 1980, ‘Ordering of FeNi in clear taenite from meteorites’, Nature, vol. 287, p. 255, DOI: 10.1038/287255a0
Cohen, E. 1905, Meteoritenkunde, Schweizerbartsche Verlagshandlung, Stuttgart.
Goldberg, E., Uchiyama, A. & Brown, H. 1951, ‘The distribution of nickel, cobalt, gallium, palladium and gold in iron meteorites’, Geochimica et Cosmochimica Acta, vol. 2, no. 1, pp. 1–25.
Goldstein, J.I. & Michael, J.R. 2006, ‘The Formation of the Widmanstätten Pattern in Meteorites’, Meteoritics & Planetary Science, vol. 41, pp. 553–70, DOI: 10.1111/j.1945-5100.2006.tb00482.x
Goldstein, J.I. & Ogilvie, R.E. 1965, ‘The growth of the Widmanstätten pattern in metallic meteorites’, Geochimica et Cosmochimica Acta, vol. 29, pp. 893–920.
Goldstein, J.I., Scott, E.R.D. & Chabot, N.L. 2009, ‘Iron meteorites: Crystallization, thermal history, parent bodies, and origin’, Chemie der Erde, vol. 69, pp. 293–325, DOI: 10.1016/j.chemer.2009.01.002
Goldstein, J.I., Scott, E.R.D. & Yang, J. 2009, ‘Metallographic Cooling Rates of Iron Meteorites: Assessment and Refinement’, Chemie der Erde, vol. 69, pp. 293–303.
Goldstein, J.I. & Short, J.M. 1967, ‘Cooling rates of iron meteorites—determined from taenite–kamacite profiles’, Geochimica et Cosmochimica Acta, vol. 31, pp. 1733–70.
Hutchison, R. 2004, Meteorites: A Petrologic, Chemical and Isotopic Synthesis, Cambridge Planetary Science Series, Cambridge.
Kase, T. 1925, ‘Thermal alteration in iron meteorites’, Science Reports of the Tohoku Imperial University, vol. 14, pp. 173–217.
Kracher, A., Willis, J. & Wasson, J.T. 1980, ‘Chemical classification of iron meteorites-IX. A new group (IIF), revision of IAB and IIICD, and data on 57 additional irons’, Geochimica et Cosmochimica Acta, vol. 44, pp. 773–87.
Langenhorst, F. 2002, ‘Shock Metamorphism of Some Minerals: Basic Introduction and Microstructural Observations’, Bulletin of the Czech Geological Survey, vol. 77, no. 4, pp. 265–82.
Lovering, J.F., Nichiporuk, W., Chodos, A. & Brown, H. 1957, ‘The distribution of gallium, germanium, cobalt, chromium, and copper in iron and stony-iron meteorites in relation to nickel content and structure’, Geochimica et Cosmochimica Acta, vol. 11, pp. 263–78.
Malvin, D.J., Wang, D. & Wasson, J.T. 1984, ‘Chemical classification of iron meteorites - X. Multielement studies of 43 irons, resolution of group IIIE from IIIAB, and evaluation of Cu as a taxonomic parameter’, Geochimica et Cosmochimica Acta, vol. 48, no. 4, pp. 785–804.
Massalski, T.B., Subramanian, P.R., Okamoto, H. & Kacprazak, L. 1990, Binary Alloy Phase Diagrams, 2nd edn, ASM International, Materials Park.
Monteiro, F.A. 2018, ‘Caracterização Histórica, Mineralógica e Metalográfica de Artefatos Forjados Supostamente Utilizando Ferro Meteorítico’, Master dissertation, Universidade Federal do Rio de Janeiro, Rio de Janeiro.
Monteiro, F.A., Oliveira, F.A., Tosi, A.A. & Zucolotto, M.E. 2020, ‘Recognition and Characterization of Metal Meteorites Rescued After Fire of the National Museum/UFRJ’, Proceedings of XLIII Reunião Anual da SAB, vol. 32, no. 1, pp. 167–8.
Norton, O.R. & Chitwood, L. 2008, Field Guide to Meteors and Meteorites.
Perry, S.H. 1944, The Metallography of Meteoric Iron, U.S. National Museum Bulletin 184.
Ramdohr, P. 1967, ‘On the wide-spread paragenesis of ore minerals originating during serpentinization’, Geologiya Rudnykh Mestorozhdenii, vol. 2, pp. 32–43.
Reed, S.J.B. 1965, ‘Characteristic fluorescence corrections in electron-probe microanalysis’, British Journal of Applied Physics, vol. 16, no. 7, p. 913.
Reisener, R.J. & Goldstein, J.I. 2003, ‘Ordinary chondrite metallography: Part 1. Fe-Ni taenite cooling experiments’, Meteoritics & Planetary Science, vol. 38, pp. 1669–78.
Rose, G. 1864, ‘Ueber das Verhältniss der Krystallformen des Systems vom regulären Oktaeder zu den Krystallformen des Systems vom regulären Hexaëder’, Poggendorffs Annalen der Physik und Chemie, vol. 123, no. 2, pp. 481–511.
Ruzicka, A., Grossman, J.N., Garvie, L. & Benedix, G.K. 2014, ‘The Meteoritical Bulletin, No. 100’, Meteoritics & Planetary Science, vol. 49, pp. E1–E101.
Ruzicka, A. & Hutson, M. 2010, ‘Comparative petrology of silicates in the Udei Station (IAB) and Miles (IIE) iron meteorites: Implications for the origin of silicate-bearing iron’, Geochimica et Cosmochimica Acta, vol. 74, no. 2, pp. 394–433.
Scott, E.R.D. & Wasson, J.T. 1975, ‘Classification and properties of iron-meteorites’, Reviews of Geophysics, vol. 13, pp. 527–46.
Scott, E.R.D. & Wasson, J.T. 1976, ‘Chemical classification of iron meteorites. VIII - Groups IC, IIE, IIIF and 97 other irons’, Geochimica et Cosmochimica Acta, vol. 40, pp. 103–15.
Sorby, H.C. 1887, ‘On The Microscopical Structure of Iron and Steel’, J Iron Steel Inst, vol. 1, pp. 255–88.
Vogel, R. 1927, ‘Über die Strukturformen des Meteoreisens und Ihre Spezielle Beeinflussung durch Umwendlung und Beigemengten Phosphor’, Abhandlunger der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse, vol. 12, no. 2.
Vogel, R. 1932, ‘Eine umfassendere Deutung der Gefugeerscheinungen des Meteoreisens durch das Zustandsdiagramm des ternaren Systems Eisen-Nickel-Phosphor’, Abhandlungen der Gesellschaft der Wissenschaften zu Gottingen, Mathematisch-physikalische Klasse, vol. 3, no. 6.
Walker, R.J., McDonough, W.F., Honesto, J., Chabot, N.L., McCoy, T.J., Ash, R.D. & Bellucci, J.J. 2008, ‘Modeling fractional crystallization of group IVB iron meteorites’, Geochimica et Cosmochimica Acta, vol. 72, no. 8, pp. 2198–216.
Wasson, J.T. 1967, ‘The chemical classification of iron meteorites: I. A study of iron meteorites with low concentrations of gallium and germanium’, Geochimica et Cosmochimica Acta, vol. 31, no. 2, pp. 161–80.
Wasson, J.T. & Kimbeblin, J. 1967, ‘The chemical classification of iron meteorites—II. Irons and pallasites with germanium concentrations between 8 and 100 ppm’, Geochimica et Cosmochimica Acta, vol. 31, no. 10, pp. 2065–93.
Wasson, J.T. 1969, ‘The chemical classification of iron meteorites—III. Hexahedrites and other irons with germanium concentrations between 80 and 200 ppm’, Geochimica et Cosmochimica Acta, vol. 33, no. 7, pp. 859–68.
Wasson, J.T. 1974, Meteorites: Classification and Properties, Springer, New York.
Wasson, J.T. & Wang, J. 1986, ‘A nonmagmatic origin of group-IIE iron meteorites’, Geochimica et Cosmochimica Acta, vol. 50, no. 5, pp. 725–32.
Wasson, J.T. 1990, ‘Ungrouped Iron Meteorites in Antarctica: Origin of Anomalously High Abundance’, Science, vol. 249, no. 4971, pp. 900–2.
Wasson, J.T. 1999, ‘Trapped melt in IIIAB irons; solid/liquid elemental partitioning during the fractionation of the IIIAB magma’, Geochimica et Cosmochimica Acta, vol. 63, no. 18, pp. 2875–89.
Wasson, J.T. & Richardson, J.W. 2001, ‘Fractionation trends among IVA iron meteorites: Contrasts with IIIAB trends’, Geochimica et Cosmochimica Acta, vol. 65, no. 6, pp. 951–70.
Wasson, J.T. & Kallemeyn, G.W. 2002, ‘Classification and compositional framework of iron meteorites’, Geochimica et Cosmochimica Acta, vol. 66, pp. 2445–73.
Wasson, J.T. & Huber, H. 2006, ‘Compositional trends among IID irons; their possible formation from the P-rich lower magma in a two-layer core’, Geochimica et Cosmochimica Acta, vol. 70, no. 24, pp. 6153–67.
Wasson, J.T., Huber, H. & Malvin, D.J. 2007, ‘Formation of IIAB iron meteorites’, Geochimica et Cosmochimica Acta, vol. 71, no. 3, pp. 760–81.
Willis, J. & Goldstein, J.I. 1981, ‘Solidification zoning and metallographic cooling rates of chondrites’, Nature, vol. 293, pp. 126–7.
Wood, J.A. 1964, ‘The cooling rates and parent planets of several iron meteorites’, Icarus, vol. 3, pp. 429–59.
Wood, J.A. 1968, Meteorites and the Origin of Planets, Earth and Planetary Science Series, McGraw-Hill Book Co., New York.
Yang, C.W., Williams, D.B. & Goldstein, J.I. 1996, ‘A new empirical cooling rate indicator for iron meteorites’, Geochimica et Cosmochimica Acta, vol. 60, pp. 263–72.
Yang, J. & Goldstein, J.I. 2005, ‘The formation of the Widmanstätten structure in meteorites’, Meteoritics & Planetary Science, vol. 40, no. 2, pp. 239–53.
Yang, J., Goldstein, J.I. & Scott, E.R.D. 2007, ‘Iron Meteorite Cooling Rates: New Constraints from the Ni Concentration Profiles in Plessite’, Geochimica et Cosmochimica Acta, vol. 71, pp. 4087–101.
Yang, J., Goldstein, J.I. & Scott, E.R.D. 2010, ‘Main-Group Pallasites: Chemical Compositions, Cooling Rates, and Origin’, Geochimica et Cosmochimica Acta, vol. 74, pp. 4471–92.
Yang, J., Goldstein, J.I., Michael, J.R., Kotula, P.G. & Scott, E.R.D. 2010, ‘Thermal history and origin of the IVB iron meteorites and their parent body’, Geochimica et Cosmochimica Acta, vol. 74, pp. 4493–506.
Zucolotto, M.E., Fonseca, A.C., Antonello, L.L. & Monteiro, F.A. 2013, Decifrando os Meteoritos, Editora da Universidade Federal do Rio de Janeiro – Museu Nacional, Rio de Janeiro.
Zucolotto, M.E., Ornellas, I.D. & Tosi, A.A. 2022, ‘Using HHXRF to Screen Rescued Meteorites from the National Museum’s Fire’, Proceedings of 85th Annual Meeting of The Meteoritical Society, vol. 85, no. 2695.
Zucolotto, M.E., Tosi, A.A. & Monteiro, F.A. 2019, viewed 8 Dec. 2025, http://www.meteorite-times.com/the-fire-of-the-national-museum-of-rio-de-janeiro.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
This journal is licensed under a Creative Commons — Attribution 4.0 International — CC BY 4.0, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.











