Estilo matemático

Autores

Palavras-chave:

Filosofia da Matemática, História da Matemática, Epistemologia da Matemática, Estilo

Resumo

Este ensaio inicia com uma taxonomia dos principais contextos matemáticos nos quais a noção de “estilo” vem sendo mobilizada desde o início do século XX. Dentre estes contextos, encontramos o uso da noção de estilo em histórias culturais comparadas da matemática, na caracterização de estilos nacionais e em descrições da prática matemática. Esses desenvolvimentos são então relacionados à abordagem mais conhecida do estilo na história e na filosofia das ciências naturais, nas quais se distinguem os estilos “locais” e “metodológicos”. Argumenta-se que o locus natural de “estilo” em matemática encontra-se entre os estilos “local” e “metodológico” descritos por historiadores e filó- sofos da ciência. Finalmente, a última parte do ensaio revisa alguns dos principais tratamentos do estilo na matemática, devidos a Hacking e Granger, e investiga suas implicações epistemológicas e ontológicas.

Downloads

Não há dados estatísticos.

Biografia do Autor

Paolo Mancosu, Universidade de Berkeley, EUA

Doutor pela Universidade de Stanford. É Professor de Filosofia na Universidade da Califórnia em Berkeley. Ao longo de sua carreira, lecionou nas universidades de Stanford, Oxford e Yale. Foi bolsista da Fundação Alexander von Humboldt (Humboldt Stiftung), do Instituto de Estudos Avançados de Berlim (Wissenschaftskolleg zu Berlin), do Institute for Advanced Study em Princeton e do Institut d’Études Avancées de Paris. Atuou ainda como professor visitante no Centro de Filosofia Matemática de Munique (Munich Center for Mathematical Philosophy) e como bolsista do programa LMU-UCB Research in the Humanities. Em 2021–2022, foi professor visitante na Université de Paris 1 Panthéon-Sorbonne, ocupando a Chaire d’excellence internationale Blaise Pascal.Suas áreas de interesse concentram-se na filosofia da matemática e sua história, na filosofia da lógica e na lógica matemática. Também publicou extensivamente sobre a história editorial de Doutor Jivago, de Pasternak. Atualmente, sua produção escrita dedica-se ao neologicismo, à filosofia da prática matemática e aos infinitos matemáticos.

Referências

BAKER, A. 2008. Experimental mathematics. Erkenntnis, vol. 68, pp. 331–344. DOI: 10.1007/s10670-008-9104-3

BENIS-SINACEUR, H. 2010. Style et contenu formel chez Gilles-Gaston Granger. In : SOULEZ, A. &

MORENO, A. R. (eds.).La Pensée de Gilles-Gaston Granger. Paris: Hermann, pp. 161–206.

BENSE, M. 1946. Konturen einer Geistesgeschichte der Mathematik. Die Mathematik und die Wissenschaften. Hamburg: Claassen & Goverts. Também em BENSE, M. 1998. Ausgewählte Schriften, Band 2, Philosophie der Mathematik, Naturwissenschaft und Technik. Weimar: Verlag J. B. Metzler, Stuttgart (ver cap. 2 “Stilgeschichte in der Mathematik”).

BENSE, M. 1949. Konturen einer Geistesgeschichte der Mathematik. II. Die Mathematik in der Kunst. Hamburg: Claassen & Goverts. Também em BENSE, M. 1998. Ausgewählte Schriften, Band 2, Philosophie der Mathematik, Naturwissenschaft und Technik. Weimar: Verlag J. B. Metzler, Stuttgart (ver cap. 1 “Zum Begriff des Stils”).

BIEBERBACH, L. 1934a. Kurzreferat, Forschungen und Fortschritte, vol. 10, pp. 235–237.

BIEBERBACH, L. 1934b. Persönlichkeitsstruktur und mathematisches Schaffen. Unterrichtblätter für Mathematik und Naturwissenschaften, vol. 40, pp. 236–243.

BIEBERBACH, L. 1934c. Stilarten mathematischen Schaffens, Sitzungsbericht der preußischen Akademie der Wissenschaften, vol. 40, pp.351–360.

BORROMEO FERRI, R. 2005. Mathematische Denkstile. Ergebnisse einer empirische Studie. Hildesheim:

Verlag Franzbecker.

BOTTAZZINI, U. 2001. From Paris to Berlin: Contrasted Images of nineteenth-century mathematics. In: BOTTAZZINI, U A. & DAHAN DALMEDICO, A. (eds.), pp. 31–47.

BOTTAZZINI, U. & DAHAN DALMEDICO, A. (eds.) 2001, Changing Images of Mathematics, London: Routledge. DOI: 10.4324/9780203168858

BRIGAGLIA, A., 2001,.The creation and persistence of national schools: the case of Italian algebraic geometry. In: BOTTAZZINI, U A. & DAHAN DALMEDICO, A. (eds.), pp. 187–206.

CASNATI, G., et al. (eds.) 2016. From Classical to Modern Algebraic Geometry. Corrado Segre Mastership and Legacy. Cham: Birkhäuser. DOI: 10.1007/978-3-319-32994-9

CAVALIERI, B. 1635. Geometria Indivisibilibus Continuorum Nova Quadam Ratione Promota. Bologna: Clemente Ferroni.

CHASLES, M., 1837. Aperçu Historique sur l’Origine et le Développement des Méthodes en Géométrie. Bruxelles: M. Hayez.

CHEVALLEY, C. 1935. Variations du style mathématique. Revue de Métaphysique et de Morale, vol. 3, pp. 375–384.

COHEN, I.B. 1992. The Principia, universal gravitation and the ‘Newtonian style’ in relation to the Newtonian revolution in science. In BECHLER, Z., (ed.) Contemporary Newtonian Research. Dordrecht: Reidel, pp. 21–108.

CORFIELD, D. 2003. Towards a Philosophy of ‘Real’ Mathematics. Cambridge: Cambridge University Press.

CORRY, L. 2004a. Modern Algebra and the Rise of Mathematical Structure. Basel: Birkhäuser. 2nd edition. DOI: 10.1007/978-3-0348-7917-0

CORRY, L. 2004b. Introduction. Science in Context, vol.17, pp 1–22. DOI: 10.1017/S0269889704000020

CROMBIE, A. 1994. Styles of Scientific Thinking in the European Tradition. London: Duckworth.

de GANDT, F. 1986. Le style mathématique des ‘Principia’ de Newton”. Revue d’Histoire des Sciences, vol. 39, n. 3, pp. 195–222. DOI: 10.3406/rhs.1986.4245

de LORENZO, J. 1971. Introducción al estilo matematico. Madrid: Editorial Tecnos.

DHOMBRES, J. 1993. La figure dans le discours géométrique: les façonnages d’un style. Nantes: Université de Nantes.

DUBUCS, J. AND DUBUCS, M. 1994. La couleur des preuves. In: de COOREBYTER, V. (ed.). Structures rhétoriques en science. Paris : PUF, pp. 231–249.

DUHEM, P. 1915. La Science Allemande. Paris: Hermann. English translation: German Science. Chicago: Carus Publishing, 2000.

EDWARDS, H.M. 1987. Dedekind’s invention of ideals. In: PHILLIPS, E. Studies in the History of Mathematics. Washington: The Mathematical Association of America, pp. 8–20.

ELWICK, J. 2007. Styles of Reasoning in the British Life Sciences: Shared Assumptions, 1820–1858. London: Pickering & Chatto. DOI: 10.1017/UPO9781846155531

EPPLE, M. 1997. Styles of argumentation in the late 19th century geometry and the structure of mathematical modernity. In: OTTE, M. & PANZA, M. (eds.) Analysis and Synthesis in Mathematics. Dordrecht: Kluwer, pp. 177–198.

EPPLE, M. 2004. Knot Invariants in Vienna and Princeton during the 1920s: Epistemic configurations of mathematical research. Science in Context, vol. 17, pp.131–164. DOI: 10.1017/S0269889704000081

EPPLE, M. 2011. Between timeless and historiality: On the dynamics of epistemic objects of mathematics. Isis, vol.102, pp. 481–493. DOI: 10.1086/661618

ETCHEVERRÍA, J. 1996. Empirical methods in mathematics. A case study: Goldbach’s conjecture. In: MUNÉVAR, M. (ed.) Spanish Studies in the Philosophy of Science. Dordrecht: Kluwer, pp. 19–55.

FERREIRÓS, J., AND RECK, E. 2020. Dedekind’s mathematical structuralism. In Reck, E. & Schiemer, G. (eds.) The Prehistory of Mathematical Structuralism. Oxford: Oxford University Press, pp. 59–87. DOI: 10.1093/oso/9780190641221.003.0003

FLECK, L. 1935. Entstehung und Entwicklung einer wissenschaftlichen Tatsache. Einführung in die Lehre vom Denkstil und Denkkollektiv. Basel: Schwabe. English translation: Genesis and Development of a Scientific Fact (Translated into English by Frederick Bradley). Chicago: University of Chicago Press, 1979.

FLECKENSTEIN, J.O. 1955. Stilprobleme des Barock bei der Entdeckung der Infinitesimalrechnung. Studium Generale, vol. 8, pp. 159–166.

FREUDENTHAL, H. 1975. Mathematics as an Educational Task. Dordrecht: Reidel.

GAVROGLU, K. 1990. Differences in Style as a Way of Probing the Context of Discovery. Philosophia, vol. 45, pp. 53–75.

GAYON, J. 1996. De la catégorie de style en histoire des sciences. Alliage, vol. 26, pp.13–25.

GAYON, J. 1998. De l’usage de la notion de style en histoire des sciences. In : GAYON, J. et al. (eds.) La Rhétorique: Enjeux de ses Résurgences. Bruxelles: OUSIA, pp. 162–181.

GOLDSTEIN, C. 2001, “L’expérience des nombres de Bernard Frenicle de Bessy”. Revue de Synthèse, 122: 425–454. DOI: 10.1007/BF02974455

GRANGER, G.G. 1968. Essai d’une philosophie du style, Paris: Armand Colin, reprinted with corrections by Paris: Odile Jacob. Traducão ao português por Scarlet Marton. São Paulo: Perspectiva, 1974.

GRANGER, G.G. Le style mathématique de l’Académie platonicienne. In GRANGER, G.G. Philosophie, Langage, Science. Les Ulis: EDP Science, pp. 267–294.

GRAY, J. 2008, Plato’s Ghost: The modernist transformation of mathematics. Princeton: Princeton University Press. DOI: 10.1515/9781400837037

HACKING, I. 1992. ‘Style’ for historians and philosophers. Studies in History and Philosophy of Science, vol. 23, pp. 1–20. DOI: 10.1016/0039-3681(92)90024-Z

HACKING, I. 1995. Immagini radicalmente costruzionaliste del progresso matematico. In: PAGNI- NI, A. (ed.) Realismo/Antirealismo. Firenze: La Nuova Italia, pp. 59–92.

HACKING, I. The disunities of science. In: GALISON. & D. STUMP (eds.) The Disunity of Science: Boundaries, Context and Power. Stanford: Stanford University Press, pp. 37–74.

HACKING, I. 2002. Historical Ontology. Cambridge, MA: Harvard University Press.

HACKING, I. ‘Language, Truth, and Reason’ 30 years later. Studies in History and Philosophy of Science, vol. 43, pp. 599–609. DOI: 10.1016/j.shpsa.2012.07.003

HARWOOD, J. 1993. Styles of Scientific Thought—The German Genetics Community, 1900–1933. Chicago: The University of Chicago Press.

HØYRUP, J. 2005. Tertium non datur: on reasoning styles in early mathematics. In: MANCOSU, P. et al. (eds.) Visualization, Explanation and Reasoning Styles in Mathematics. Dordrecht: Springer, pp. 91–121. DOI: 10.1007/1-4020-3335-4_6

KATZ, S. 2004. Berlin roots—Zionist incarnation: the ethos of pure mathematics and the beginning of the Einstein Institute of mathematics at the Hebrew University of Jerusalem. Science in Context, vol. 17, pp. 199–234. DOI: 10.1017/S0269889704000123

KLEIN, F. 1924. Elementarmathematik vom höheren Standpunkte aus. Erster Band. Arithmetik, Algebra, Analysis, 3rd edition. Berlin: Julius Springer.

KLEINERT, A. 1978. Von der Science Allemande zur Deutschen Physik. Forschungen zur westeuropäischer Geschichte, vol. 6, pp. 509–525.

KUSCH, M. 2010. Hacking’s historical epistemology: a critique of styles of reasoning. Studies in History and Philosophy of Science, vol. 41, pp. 158–173. DOI: 10.1016/j.shpsa.2010.03.002

KWA, C. 2012. An ‘ecological’ view of styles of science and of art: Alois Riegl’s explorations of the style concept. Studies in History and Philosophy of Science, vol. 43, pp. 610–618. DOI: 10.1016/j.shpsa.2012.06.001

LARVOR, B. (ed.). 2016. Mathematical Cultures. The London Meetings 2012–2014. Cham: Birkhäuser. DOI: 10.1007/978-3-319-28582-5

LAUGWITZ, D. 1993. Zur Genese des Denkens in mathematischen Begriffen: Bernhard Riemanns neuer Stil in der Analysis, Darmstadt.

LEIBNIZ, G.W. 1701. Mémoire de Mr. Leibniz touchant son sentiment sur le calcul différentiel. Journal de Trévoux, pp. 270–272. Reprinted in G. W. Leibniz, Mathematische Schriften (Edited by C.I. Gerhardt). Hildesheim: Georg Olms, 1962, vol. IV, pp. 95–96.

MAIENSCHEIN, J. 1991. Epistemic Styles in German and American Embryology. Science in Context, vol. 4, pp. 407–427. DOI: 10.1017/S0269889700001095

MANCOSU, P. (ed.). 1998. From Brouwer to Hilbert. New York and Oxford: Oxford University Press. DOI: 10.1093/oso/9780195093428.001.0001

MANCOSU, P. et al. (eds.) 2005. Visualization, Explanation and Reasoning Styles in Mathematics. Dordrecht: Springer. DOI: 10.1007/1-4020-3335-4

STERNBERG & ZHANG, pp. 1–22.

STERNBERG, R.J. & ZHANG, L.F. (eds.) 2001. Perspectives on Thinking, learning, and cognitive styles. Mahwah, NJ: Lawrence Erlbaum.

TAPPENDEN, J. 2005. Proof style and understanding in mathematics I: Visualization, unification and axiom choice. In: MANCOSU, P. 2005. pp. 147–214. DOI: 10.1007/1-4020-3335-4_8

van BENDEGEM, J.P. 1998. What, if anything, is an experiment in mathematics? In Anapolitanos, D. et al. (eds.). Philosophy and the Many Faces of Science. Lanham: Rowman and Littlefeld, pp. 172–182.

van BENDEGEM, J.P. and van KERKHOVE, B. 2014. Another look at mathematical style, as inspired by Le Lionnais and the OuLiPo”. In: WEBER, E. et al. (eds.). Logic, Reasoning, and Rationality. New York: Springer, pp. 233–245. DOI: 10.1007/978-94-017-9011-6_14

WEISS, E.A. 1939. Über den mathematischen Stil von Poncelet. Deutsche Mathematik, vol. 4, pp. 126– 127.

WESSELY, A. 1991. Transposing ‘style’ from the history of art to the history of science. Science in Context, vol. 4, pp. 265–278. DOI: 10.1017/S0269889700000184

WISAN, W. 1981. Galileo and the emergence of a new scientific style. In: HINTIKKA, D. GRUENDER & E. AGAZZI (eds.) Theory Change, Ancient Axiomatics and Galileo’s Methodology, vol. 1. Dordrecht: Reidel, pp. 311–339.

Downloads

Publicado

10-12-2025

Como Citar

MANCOSU, Paolo. Estilo matemático. Analytica - Revista de Filosofia, [S. l.], v. 26, n. 2, p. 88–106, 2025. Disponível em: https://revistas.ufrj.br/index.php/analytica/article/view/71728. Acesso em: 9 fev. 2026.