Eventos de Influência do Buraco de Ozônio Antártico Ocorridos em 2016 Sobre o Sul do Brasil

Authors

DOI:

https://doi.org/10.11137/1982-3908_2021_44_36142

Keywords:

, Ozônio estratosférico, Coluna total de ozônio, Vorticidade potencial

Abstract

O presente trabalho objetivou identificar e analisar a dinâmica estratosférica dos eventos de influência do Buraco de Ozônio Antártico (BOA) ocorridos sobre o Sul do Brasil no ano de 2016. Para atingir esse objetivo, buscou-se dias de redução no conteúdo de ozônio estratosférico com base em dados médios diários da Coluna Total de Ozônio (CTO) obtidos pelo espectrofotômetro Brewer instalado no Observatório Espacial do Sul (OES/INPE) (29.443752 ºS, 53.823084 ºO; 488,7 metros) e pelo instrumento de medição de Ozônio (Ozone Monitoring Instrument - OMI) a bordo do satélite Aura da NASA.  Para esses dias foram realizadas análises da dinâmica da estratosfera através de campos isentrópicos de Vorticidade Potencial (PV) nos níveis de 600 e 700 K de temperatura potencial, utilizando as médias diárias de PV obtidas a partir das reanálises ERA-Interim do ECMWF (European Centre for Medium-range Weather Forecast) a fim de verificar a origem das massas de ar pobres em ozônio, e desta forma, a confirmação da origem dessas massas através das trajetórias retroativas obtidas com uso do modelo HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) da NOAA (National Oceanic and Atmospheric Administration). Além disso, imagens do conteúdo de ozônio do satélite OMI foram utilizadas como técnica complementar para verificar a atuação do BOA sobre o Sul do Brasil. Usando a metodologia apresentada identificou-se 6 eventos de influência do Buraco de Ozônio Antártico sobre o Sul do Brasil no ano de 2016 com percentagem de redução média de 11%  da CTO em relação as climatologias mensais, confirmados pela passagem de filamentos polares estratosféricos sobre a região do OES, observados nos campos isentrópicos de VP nos níveis de 600 e 700 K de temperatura potencial assim como pelas trajetórias retroativas de origem polar obtidas no modelo HYSPLIT.

References

Bencherif, H., El Amraoul, L., Semane, N., Massart, S., Charyulu, D.V., Hauchecorne, A. & Peuch, V.H. 2007, ‘Examination of the 2002 major warming in the southern hemisphere using ground-based and Odin/SMR assimilated data: Stratospheric ozone distributions and tropic/midlatitude exchange’, Canadian Journal of Physics, vol. 85, no. 11, pp. 1287–300. https://doi.org/10.1139/P07-143.

Bencherif, H., Portafaix, T., Baray, J.L., Morel, B., Baldy, S., Leveau, J., Hauchecorne, A., Keckhut, P., Moorgawa, A., Michaelis, M.M. & Diab, R. 2003, ‘LIDAR observations of lower stratospheric aerosols over South Africa linked to large scale transport across the southern subtropical barrier’, Journal of Atmospheric and Solar-Terrestrial Physics, vol. 65, no. 6, pp. 707–15. https://doi.org/10.1016/S1364-6826(03)00006-3.

Bittencourt, G.D., Bresciani, C., Kirsch Pinheiro, D., Jorge Schuch, N., Bencherif, H., Paes Leme, N. & Vaz Peres, L. 2018, ‘A major event of Antarctic ozone hole influence in southern Brazil in October 2016: An analysis of tropospheric and stratospheric dynamics’, Annales Geophysicae, vol. 36, no. 2, pp. 415–24. https://doi.org/10.5194/angeo-36-415-2018.

Braesicke, P., Keeble, J., Yang, X., Stiller, G., Kellmann, S., Abraham, N.L., Archibald, A., Telford, P. & Pyle, J.A. 2013, ‘Circulation anomalies in the Southern Hemisphere and ozone changes’, Atmospheric Chemistry and Physics, vol. 13, no. 21, pp. 10677–88. https://doi.org/10.5194/acp-13-10677-2013.

Bresciani, C., Dornelles Bittencourt, G., Kirsch Pinheiro, D., Jorge Schuch, N., Bencherif, H., Paes Leme, N. & Vaz Peres, L. 2018, ‘Report of a large depletion in the ozone layer over southern Brazil and Uruguay by using multi-instrumental data’, Annales Geophysicae, vol. 36, no. 2, pp. 405–13. https://doi.org/10.5194/angeo-36-405-2018.

Brewer, A.W. 1949, ‘Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere’, Quarterly Journal of the Royal Meteorological Society, vol. 75, no. 326, pp. 351–63. https://doi.org/10.1002/qj.49707532603.

Chiodo, G. & Polvani, L.M. 2019, ‘The response of the ozone layer to quadrupled CO2 concentrations: Implications for climate’, Journal of Climate, vol. 32, no. 22, pp. 7629–42. https://doi.org/10.1175/JCLI-D-19-0086.1.

Chiodo, G., Polvani, L.M., Marsh, D.R., Stenke, A., Ball, W., Rozanov, E., Muthers, S. & Tsigaridis, K. 2018, ‘The response of the ozone layer to quadrupled CO2 concentrations’, Journal of Climate, vol. 31, no. 10, pp. 3893–907. https://doi.org/10.1175/JCLI-D-17-0492.1.

Dennison, F.W., McDonald, A. & Morgenstern, O. 2016, ‘The influence of ozone forcing on blocking in the Southern Hemisphere’, Journal of Geophysical Research, vol. 121, no. 24, pp. 14358–71. https://doi.org/10.1002/2016JD025033.

Dobson, G.M.B., Kimball, H.H. & Kidson, E. 1930, ‘Observations of the amount of ozone in the earth’s atmosphere, and its relation to other geophysical conditions.—Part IV’, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 129, no. 811, pp. 411–33. https://doi.org/10.1098/rspa.1930.0165.

Farman, J.C., Gardiner, B.G. & Shanklin, J.D. 1985, ‘Large losses of total ozone in Antarctica reveal seasonal ClO x/NOx interaction’, Nature, vol. 315, no. 6016, pp. 207–10. https://doi.org/10.1038/315207a0.

Gettelman, A., Hegglin, M.I., Son, S.W., Kim, J., Fujiwara, M., Birner, T., Kremser, S., Rex, M., Añel, J.A., Akiyoshi, H., Austin, J., Bekki, S., Braesike, P., Brhl, C., Butchart, N., Chipperfield, M., Dameris, M., Dhomse, S., Garny, H., Hardiman, S.C., Jöckel, P., Kinnison, D.E., Lamarque, J.F., Mancini, E., Marchand, M., Michou, M., Morgenstern, O., Pawson, S., Pitari, G., Plummer, D., Pyle, J.A., Rozanov, E., Scinocca, J., Shepherd, T.G., Shibata, K., Smale, D., Teyssdre, H. & Tian, W. 2010, ‘Multimodel assessment of the upper troposphere and lower stratosphere: Tropics and global trends’, Journal of Geophysical Research Atmospheres, vol. 115, no. 20, pp. 1–22. https://doi.org/10.1029/2009JD013638.

Gonzalez, P.L.M., Polvani, L.M., Seager, R. & Correa, G.J.P. 2014, ‘Stratospheric ozone depletion: A key driver of recent precipitation trends in South Eastern South America’, Climate Dynamics, vol. 42, no. 7–8, pp. 1775–92. https://doi.org/10.1007/s00382-013-1777-x.

Grise, K.M., Polvani, L.M., Tselioudis, G., Wu, Y. & Zelinka, M.D. 2013, ‘The ozone hole indirect effect: Cloud-radiative anomalies accompanying the poleward shift of the eddy-driven jet in the Southern Hemisphere’, Geophysical Research Letters, vol. 40, no. 14, pp. 3688–92. https://doi.org/10.1002/grl.50675.

Grise, K.M., Son, S.W., Correa, G.J.P. & Polvani, L.M. 2014, ‘The response of extratropical cyclones in the Southern Hemisphere to stratospheric ozone depletion in the 20th century’, Atmospheric Science Letters, vol. 15, no. 1, pp. 29–36. https://doi.org/10.1002/asl2.458.

Guarnieri, R.A., Padilha, L.F., Guarnieri, F.L., Echer, E., Makita, K., Pinheiro, D.K., Schuch, A.M.P., Boeira, L.S. & Schuch, N.J. 2004, ‘A study of the anticorrelations between ozone and UV-B radiation using linear and exponential fits in southern Brazil’, Advances in Space Research, vol. 34, no. 4, pp. 764–8. https://doi.org/10.1016/j.asr.2003.06.040.

Hoskins, B.J., McIntyre, M.E. & Robertson, A.W. 1985, ‘On the use and significance of isentropic potential vorticity maps’, The Quarterly Journal of the Royal Meteorological Society, vol. 111, no. 466, pp. 877–946. https://doi.org/10.1002/qj.49711146602.

Hu, D., Tian, W., Xie, F., Wang, C. & Zhang, J. 2015, ‘Impacts of stratospheric ozone depletion and recovery on wave propagation in the boreal winter stratosphere’, Journal of Geophysical Research, vol. 120, no. 16, pp. 8299–317. https://doi.org/10.1002/2014JD022855.

Kerr, J.B. 2002, ‘New methodology for deriving total ozone and other atmospheric variables from Brewer spectrophotometer direct sun spectra’, Journal of Geophysical Research: Atmospheres, vol. 107, no. D23, p. ACH 22-1-ACH 22-17. https://doi.org/10.1029/2001JD001227.

Kerr, J.B., McElroy, C.T., Wardle, D.I., Olafson, R.A. & Evans, W.F.J. 1985, ‘The Automated Brewer Spectrophotometer’, in C.S. Zerefos & A. Ghazi (eds),Atmospheric Ozone, Springer, Dordrecht, pp. 396–401. https://doi.org/10.1007/978-94-009-5313-0_80.

Kidston, J., Scaife, A.A., Hardiman, S.C., Mitchell, D.M., Butchart, N., Baldwin, M.P. & Gray, L.J. 2015, ‘Stratospheric influence on tropospheric jet streams, storm tracks and surface weather’, Nature Geoscience, vol. 8, no. 6, pp. 433–40. https://doi.org/10.1038/NGEO2424.

Kiehl, J.T. & Trenberth, K.E. 1997, ‘Earth’s Annual Global Mean Energy Budget’, Bulletin of the American Meteorological Society, vol. 78, no. 2, pp. 197–208. https://doi.org/10.1175/1520-0477(1997)078<0197:EAGMEB>2.0.CO;2.

Kirchhoff, V.W.J.H., Schuch, N.J., Pinheiro, D.K. & Harris, J.M. 1996, ‘Evidence for an ozone hole perturbation at 30° south’, Atmospheric Environment, vol. 30, no. 9, pp. 1481–4. https://doi.org/10.1016/1352-2310(95)00362-2.

Levelt, P.F., Hilsenrath, E., Leppelmeier, G.W., Van Den Oord, G.H.J., Bhartia, P.K., Tamminen, J., De Haan, J.F. & Veefkind, J.P. 2006, ‘Science objectives of the ozone monitoring instrument’, IEEE Transactions on Geoscience and Remote Sensing, vol. 44, no. 5, pp. 1199–207. https://doi.org/10.1109/TGRS.2006.872336.

London, J. & Angell, J.K. 1982, ‘The observed distribution of ozone and its variations’, in F.A. Bower & R.B. Ward (eds), Stratospheric Ozone and Man, vol. 1, CRC Press, pp. 7–42.

Marchand, M., Bekki, S., Pazmino, A., Lefèvre, F., Godin-Beekmann, S. & Hauchecorne, A. 2005, ‘Model simulations of the impact of the 2002 Antarctic ozone hole on the midlatitudes’, Journal of the Atmospheric Sciences, vol. 62, no. 3, pp. 871–84. https://doi.org/10.1175/JAS-3326.1.

McLandress, C., Perlwitz, J. & Shepherd, T.G. 2012, ‘Comment on “Tropospheric temperature response to stratospheric ozone recovery in the 21st century” by Hu, Y., Xia, Y. & Fu, Q. 2011, Atmospheric Chemistry and Physics, vol. 12, no. 5, pp. 2533–40. https://doi.org/10.5194/acp-12-2533-2012.

McLandress, C., Shepherd, T.G., Scinocca, J.F., Plummer, D.A., Sigmond, M., Jonsson, A.I. & Reader, M.C. 2011, ‘Separating the dynamical effects of climate change and ozone depletion. Part II: Southern Hemisphere troposphere’, Journal of Climate, vol. 24, no. 6, pp. 1850–68. https://doi.org/10.1175/2010JCLI3958.1.

Nash, E.R., Newman, P.A., Rosenfield, J.E. & Schoeberl, M.R. 1996, ‘An objective determination of the polar vortex using Ertel’s potential vorticity’, Journal of Geophysical Research Atmospheres, vol. 101, no. D5, pp. 9471–8. https://doi.org/10.1029/96JD00066.

National Aeronautics and Space Administration 2020, ‘Aura | OMI’, Images, data, and information for atmospheric ozone, NASA - Aura, viewed 1 November 2017, <https://aura.gsfc.nasa.gov/omi.html>.

National Oceanic and Atmospheric Administration 2020, HYSPLIT – 2 – Air Resources Laboratory, NOAA - Air Resources Laboratory, viewed 1 November 2017, <https://www.arl.noaa.gov/hysplit/hysplit/>.

Orte, P.F., Wolfram, E., Salvador, J., Mizuno, A., Bègue, N., Bencherif, H., Bali, J.L., D’Elia, R., Pazmiño, A., Godin-Beekmann, S., Ohyama, H. & Quiroga, J. 2019, ‘Analysis of a southern sub-polar short-term ozone variation event using a millimetre-wave radiometer’, Annales Geophysicae, vol. 37, no. 4, pp. 613–29. https://doi.org/10.5194/angeo-37-613-2019.

Pazmiño, A.F., Godin-Beekmann, S., Luccini, E.A., Piacentini, R.D., Quel, E.J. & Hauchecorne, A. 2008, ‘Increased UV radiation due to polar ozone chemical depletion and vortex occurrences at Southern Sub-polar Latitudes in the period [1997-2005]’, Atmospheric Chemistry and Physics, vol. 8, no. 17, pp. 5339–52. https://doi.org/10.5194/acp-8-5339-2008.

Peres, L.V. 2013, ‘Efeito secundário do buraco de ozônio antártico sobre o sul do brasil’, Dissertação de Mestrado, Programa de Pós-Graduação em Meteorologia, Universidade Federal de Santa Maria.

Peres, L.V. 2016, ‘Monitoramento da coluna total de ozônio e a ocorrência de eventos de influência do buraco de ozônio antártico sobre o sul do Brasil’, Tese de Doutorado, Programa de Pós-Graduação em Meteorologia, Universidade Federal de Santa Maria.

Peres, L.V., Bencherif, H., Mbatha, N., Schuch, A.P., Mohamed Toihir, A., Bègue, N., Portafaix, T., Anabor, V., Kirsch Pinheiro, D., Maria Paes Leme, N., Bageston, J.V. & Jorge Schuch, N. 2017, ‘Measurements of the total ozone column using a Brewer spectrophotometer and TOMS and OMI satellite instruments over the Southern Space Observatory in Brazil’, Annales Geophysicae, vol. 35, no. 1, pp. 25–37. https://doi.org/10.5194/angeo-35-25-2017.

Peres, L.V., Kall, E., Crespo, N.M., Fontinele, J.L., Anabor, V., Kirsch, D., Schuch, N.J., Maria, N. & Leme, P. 2011, ‘Caracterização sinótica do evento de efeito secundário do Buraco de Ozônio Antártico sobre o sul do Brasil do dia 14/10/2008’, Ciência e Natura, Supplementary Edition: Micrometeorology, pp. 323–6. https://doi.org/10.5902/2179460X9450

Peres, L.V., Pinheiro, D.K., Steffenel, L.A., Mendes, D., Bageston, J.V., Bittencourt, G.D., Schuch, A.P., Anabor, V., Leme, N.M.P., Schuch, N.J. & Bencherif, H. 2019, ‘Long term monitoring and climatology of stratospheric fields when the occurrence of influence of the antarctic ozone hole over south of Brazil events’, Revista Brasileira de Meteorologia, vol. 34, no. 1, pp. 151–63. https://doi.org/10.1590/0102-77863340030.

Peres, L.V., dos Reis, N.C.S., dos Santos, L. de O., Bittencourt, G.D., Schuch, A.P., Anabor, V., Pinheiro, D.K., Schuch, N.J. & Leme, N.M.P. 2016, ‘Análise Atmosférica dos Eventos de Efeito Secundário do Buraco de Ozônio Antártico Sobre o Sul do Brasil em 2012. Parte 1: Identificação dos Eventos e Análise da Dinâmica da Estratosfera’, Ciência e Natura, vol. 38, no. 1, pp. 290–9. https://doi.org/10.5902/2179-460X12141.

Peres, L.V., Reis, N.C.S. dos, Santos, L.D.O. dos, Bittencourt, G.D., Schuch, A.P., Anabor, V., Pinheiro, D.K., Schuch, N.J. & Leme, N.M.P. 2014, ‘Análise Atmosférica Dos Eventos De Efeito Secundário Do Buraco De Ozônio Antártico Sobre O Sul Do Brasil Em 2012. Parte 2:Verificação Sinótica Da Troposfera Durante Os Eventos’, Ciência e Natura, vol. 36, no. 2, pp. 423–33. https://doi.org/10.5902/2179460x13151.

Pérez, A., Crino, E., Aguirre de Cárcer, I. & Jaque, F. 2000, ‘Low-ozone events and three-dimensional transport at midlatitudes of South America during springs of 1996 and 1997’, Journal of Geophysical Research: Atmospheres, vol. 105, no. D4, pp. 4553–61.

Pérez, A. & Jaque, F. 1998, ‘On the Antarctic origin of low ozone events at the South American continent during the springs of 1993 and 1994’, Atmospheric Environment, vol. 32, no. 21, pp. 3665–8. https://doi.org/10.1029/1999JD901040.

Pinheiro, D.K., Peres, L.V., Crespo, N.M., Schuch, N.J. & Leme, N.M.P. 2011, ‘Influence of the Antarctic ozone hole over South of Brazil in 2010 and 2011’, Annual Active Report, pp. 34–8. https://doi.org/10.4322/APA.2014.058.

Polvani, L.M., Previdi, M. & Deser, C. 2011, ‘Large cancellation, due to ozone recovery, of future Southern Hemisphere atmospheric circulation trends’, Geophysical Research Letters, vol. 38, no. 4, pp. L04707. https://doi.org/10.1029/2011GL046712.

Rolph, G., Stein, A. & Stunder, B. 2017, ‘Real-time Environmental Applications and Display sYstem: READY’, Environmental Modelling and Software, vol. 95, pp. 210–28. https://doi.org/10.1016/j.envsoft.2017.06.025.

Salawitch, R.J., Fahey, D.W., Hegglin, M.I., McBride, L.A., Tribett, W.R. & Doherty, S.J. 2019, Twenty Questions and Answers About the Ozone Layer: 2018 Update, Scientific Assessment of Ozone Depletion: 2018, World Meteorological Organization, Geneva.

Salby, M.L. 1996, Fundamentals of atmospheric physics, Academic Press, Boulder, Colorado.

Schmalfuss, L.S.M. 2019, ‘Investigação da dinâmica do ozônio estratosférico sobre a América do Sul: casos de eventos de vírgula’, Tese de Doutorado, Programa de Pós-Graduação em Ciências Climáticas, Universidade Federal do Rio Grande do Norte.

Schmidt, G.A., Ruedy, R.A., Miller, R.L. & Lacis, A.A. 2010, ‘Attribution of the present-day total greenhouse effect’, Journal of Geophysical Research Atmospheres, vol. 115, no. 20, pp. D20106. https://doi.org/10.1029/2010JD014287.

Schuch, A.P., Santos, M.B. dos, Lipinski, V.M., Peres, L.V., Santos, C.P. dos, Cechin, S.Z., Schuch, N.J., Pinheiro, D.K. & Loreto, E.L. da S. 2015, ‘Identification of influential events concerning the Antarctic ozone hole over southern Brazil and the biological effects induced by UVB and UVA radiation in an endemic treefrog species’, Ecotoxicology and Environmental Safety, vol. 118, pp. 190–8. https://doi.org/10.1016/j.ecoenv.2015.04.029.

Seinfeld, J.H. & Pandis, S.N. 2016, ‘The Atmosphere and Its Constituents’, in John Wiley & Sons (ed.), Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd ed, Wiley, Hoboken, New Jersey, pp. 1–66.

Semane, N., Bencherif, H., Morel, B., Hauchecorne, A. & Diab, R.D. 2006, ‘An unusual stratospheric ozone decrease in the Southern Hemisphere subtropics linked to isentropic air-mass transport as observed over Irene (25.5°S, 28.1°E) in mid-May 2002’, Atmospheric Chemistry and Physics, vol. 6, no. 7, pp. 1927–36. https://doi.org/10.5194/acp-6-1927-2006.

Solomon, S. 1999, ‘Stratospheric ozone depletion: A review of concepts and history’, Reviews of Geophysics, vol. 37, no. 3, pp. 275–316. https://doi.org/10.1029/1999RG900008.

Solomon, S., Ivy, D.J., Kinnison, D., Mills, M.J., Neely, R.R. & Schmidt, A. 2016, ‘Emergence of healing in the Antarctic ozone layer’, Science, vol. 353, no. 6296, pp. 269–74. https://doi.org/10.1126/science.aae0061.

Steffenel, L.A., Pinheiro, M.K., Pinheiro, D.K. & Perez, L. V. 2016, ‘Using a Pervasive Computing Environment to Identify Secondary Effects of the Antarctic Ozone Hole’, Procedia Computer Science, vol. 83, no. BigD2M, pp. 1007–12. https://doi.org/10.1016/j.procs.2016.04.215.

Stein, A.F., Draxler, R.R., Rolph, G.D., Stunder, B.J.B., Cohen, M.D. & Ngan, F. 2015, ‘Noaa’s hysplit atmospheric transport and dispersion modeling system’, Bulletin of the American Meteorological Society, vol. 96, no. 12, pp. 2059–77. https://doi.org/10.1175/BAMS-D-14-00110.1.

Weber, M., Coldewey-Egbers, M., Fioletov, V.E., Frith, S.M., Wild, J.D., Burrows, J.P., Long, C.S. & Loyola, D. 2018, ‘Total ozone trends from 1979 to 2016 derived from five merged observational datasets-the emergence into ozone recovery’, Atmospheric Chemistry and Physics, vol. 18, no. 3, pp. 2097–117. https://doi.org/10.5194/acp-18-2097-2018.

Wolfram, E.A., Salvador, J., Orte, F., D’Elia, R., Godin-Beekmann, S., Kuttippurath, J., Pazmiño, A., Goutail, F., Casiccia, C., Zamorano, F., Paes Leme, N. & Quel, E.J. 2012, ‘The unusual persistence of an ozone hole over a southern mid-latitude station during the Antarctic spring 2009: A multi-instrument study’, Annales Geophysicae, vol. 30, no. 10, pp. 1435–49. https://doi.org/10.5194/angeo-30-1435-2012.

World Meteorological Organization 2018, Scientifc Assessment of Ozone Depletion: 2018, 58th edn, Global Ozone Research and Monitoring Project, Genebra.

Wu, Y. & Polvani, L.M. 2017, ‘Recent trends in extreme precipitation and temperature over Southeastern South America: The dominant role of stratospheric ozone depletion in the CESM large ensemble’, Journal of Climate, vol. 30, no. 16, pp. 6433–41. https://doi.org/10.1175/JCLI-D-17-0124.1.

Published

2021-06-24

Issue

Section

Meteorology