Espectrorradiometria de Campo e Dados Sentinel-2 Aplicado ao Estudo da Clorofila-A em Corpos Hídricos de Reservatórios

Authors

DOI:

https://doi.org/10.11137/1982-3908_2021_44_38707

Keywords:

Derivada Espectral, Mata Atlântica, Águas Continentais

Abstract

O monitoramento da qualidade de água em corpos hídricos é fundamental para a conservação destes, por isso metodologias de monitoramento em larga escala são cada vez mais imprescindíveis para monitorar ações antrópicas e naturais que alteram a qualidade destes ambientes. Partindo dessa premissa, este trabalho propôs utilizar dados de radiométricos obtidos in situ e multiespectrais do sensor MSI (Multispectral Instrument) a bordo do satélite Sentinel-2 para estudar o comportamento da clorofila-a como parâmetro de qualidade de água, em reservatório no curso do rio Juliana, na Área de Preservação Ambiental (APA) do Pratigi, Bahia, Brasil. A espectrorradiometria de campo foi empregada para estudar o comportamento ultraespectral do corpo hídrico, visando identificar feições da presença do pigmento. Com auxílio de técnicas de extração de informações, foi possível identificar a presença da clorofila na região do espectro vermelho e infravermelho próximo, possibilitando a escolha de razões de bandas do MSI. Dentre as relações matemáticas de bandas do MSI escolhidas, as que apresentaram melhor ajuste às concentrações de clorofila-a foram as razões Verde-Vermelho e Infravermelho próximo-Vermelho, com r² de 0,771 e 0,895, respectivamente, mostrando que, mesmo não tendo sido desenvolvido com a finalidade de monitorar ambientes aquáticos, os resultados demonstram um potencial de uso dos dados deste sensor para monitoramento em larga escala.

Author Biographies

Erli Pinto dos Santos, Universidade Federal de Viçosa

Departamento de Engenharia Agrícola

Taíse Bomfim de Jesus, Universidade Estadual de Feira de Santana

Departamento de Ciências Exatas

Ayala de Souza Reis Carneiro, Universidade Estadual de Feira de Santana

Departamento de Ciências Biológicas

Rosangela Leal Santos, Universidade Estadual de Feira de Santana

Departamento de Tecnologia

Washington de Jesus Sant'Anna da Franca-Rocha, Universidade Estadual de Feira de Santana

Departamento de Ciências Exatas

Taiara Souza Costa, Universidade Federal de Viçosa

Departamento de Engenharia Agrícola

References

Alcântara, E., Watanabe, F., Rodrigues, T. & Bernardo, N. 2016, ‘An investigation into the phytoplankton package effect on the chlorophyll- a specific absorption coefficient in Barra Bonita reservoir, Brazil’, Remote Sens. Lett., vol. 7, pp. 761–770. https://doi.org/10.1080/2150704X.2016.1185189

Ansper, A. & Alikas, K. 2018, ‘Retrieval of Chlorophyll a from Sentinel-2 MSI Data for the European Union Water Framework Directive Reporting Purposes’, Remote Sens., vol. 11, p. 64. https://doi.org/10.3390/rs11010064

American Public Health Association 2017, ‘Standard Methods for the Examination of Water and Wastewater’, 23rd edn, American Public Health Association, Washington D.C.

Aphalo, P.J. 2017, Learn R... as you learnt your mother tongue, Leanpub, Helsinki.

Bresciani, M., Stroppiana, D., Odermatt, D., Morabito, G. & Giardino, C. 2011, ‘Assessing remotely sensed chlorophyll-a for the implementation of the Water Framework Directive in European perialpine lakes’, Sci. Total Environ., vol. 409, pp. 3083–3091. https://doi.org/10.1016/j.scitotenv.2011.05.001

Chen, Z., Curran, P.J. & Hansom, J.D. 1992, ‘Derivative reflectance spectroscopy to estimate suspended sediment concentration’, Remote Sens. Environ., vol. 40, pp. 67–77. https://doi.org/10.1016/0034-4257(92)90127-6

Chen, J., Dowman, I., Li, S., Li, Z., Madden, M., Mills, J., Paparoditis, N., Rottensteiner, F., Sester, M., Toth, C., Trinder, J. & Heipke, C. 2016, ‘Information from imagery: ISPRS scientific vision and research agenda’, ISPRS J. Photogramm Remote Sens., vol. 115, pp. 3–21. https://doi.org/10.1016/j.isprsjprs.2015.09.008

Clark, R.N. & Roush, T.L. 1984, ‘Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications’ J. Geophys. Res. Solid Earth, vol. 89, pp. 6329–6340. https://doi.org/10.1029/JB089iB07p06329

Cloutis, E.A. 1996, ‘Review article hyperspectral geological remote sensing: Evaluation of analytical techniques’, Int. J. Remote Sens., vol. 17, pp. 2215–2242. https://doi.org/10.1080/01431169608948770

Coelho, C., Heim, B., Foerster, S., Brosinsky, A., de Araújo, J.C. 2017. In situ and satellite observation of CDOM and chlorophyll-a dynamics in small water surface reservoirs in the brazilian semiarid region. Water (Switzerland) 9. https://doi.org/10.3390/w9120913

European Space Agency 2016a, MSI Instrument – Sentinel-2 MSI Technical Guide – Sentinel Online [WWW Document], acesso em 28 nov. 2019, <https://earth.esa.int/web/sentinel/technical-guides/sentinel-2-msi/msi-instrument>.

European Space Agency 2016b, Sen2Cor Configuration and User Manual.

Gholizadeh, M., Melesse, A. & Reddi, L. 2016, ‘A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques’, Sensors, vol. 16, pp. 1298. https://doi.org/10.3390/s16081298

Gilerson, A.A., Gitelson, A.A., Zhou, J., Gurlin, D., Moses, W., Ioannou, I., Ahmed, S.A. 2010, ‘Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands’, Opt. Express, vol. 18, 24109. https://doi.org/10.1364/oe.18.024109

Gitelson, A. 1992, ‘The peak near 700 nm on radiance spectra of algae and water: relationships of its magnitude and position with chlorophyll concentration’, Int. J. Remote Sens., vol. 13, pp. 3367–3373. https://doi.org/10.1080/01431169208904125

Gitelson, A.A., Gurlin, D., Moses, W.J. & Barrow, T. 2009, ‘A bio-optical algorithm for the remote estimation of the chlorophyll- a concentration in case 2 waters’, Environ. Res. Lett., vol. 4, p. 045003. https://doi.org/10.1088/1748-9326/4/4/045003

Guimarães, T., Veronez, M., Koste, E., Gonzaga, L., Bordin, F., Inocencio, L., Larocca, A., de Oliveira, M., Vitti, D. & Mauad, F. 2017, ‘An Alternative Method of Spatial Autocorrelation for Chlorophyll Detection in Water Bodies Using Remote Sensing’, Sustainability, vol. 9, p. 416. https://doi.org/10.3390/su9030416

Ha, N.T.T., Thao, N.T.P., Koike, K. & Nhuan, M.T. 2017, ‘Selecting the Best Band Ratio to Estimate Chlorophyll-a Concentration in a Tropical Freshwater Lake Using Sentinel 2A Images from a Case Study of Lake Ba Be (Northern Vietnam)’, ISPRS Int. J. Geo-Information, vol. 6, p. 290. https://doi.org/10.3390/ijgi6090290

Han, L. 2005, ‘Estimating chlorophyll‐ a concentration using first‐derivative spectra in coastal water’, Int. J. Remote Sens., vol. 26, p. 5235–5244. https://doi.org/10.1080/01431160500219133

Laliberté, J., Larouche, P., Devred, E. & Craig, S. 2018, ‘Chlorophyll-a concentration retrieval in the optically complex waters of the St. Lawrence Estuary and Gulf using principal component analysis’, Remote Sens., vol. 10. https://doi.org/10.3390/rs10020265

Murugan, P., Sivakumar, R., Pandiyan, R. & Annadurai, M. 2016, ‘Comparison of in-Situ Hyperspectral and Landsat ETM+ Data for Chlorophyll-a Mapping in Case-II Water (Krishnarajapuram Lake, Bangalore)’, J. Indian Soc. Remote Sens., vol. 44, pp. 949–957. https://doi.org/10.1007/s12524-015-0531-8

Novo, E.M.L. de M., de Farias Barbosa, C.C., Freitas, R.M., Shimabukuro, Y.E., Melack, J.M. & Filho, W.P. 2006, ‘Seasonal changes in chlorophyll distributions in Amazon floodplain lakes derived from MODIS images’, Limnology, vol. 7, pp. 153–161. https://doi.org/10.1007/s10201-006-0179-8

R Core Team, R. 2019. R: A Language and Environment for Statistical Computing,v 3.6, R Foundation for Statistical Computing, Vienna.

Cicerelli, R. E. & Galo, M. de L. B. T. 2015, ‘Sensoriamento remoto multifonte aplicado na detecção do fitoplâncton em águas interiores / Multisource remote sensing applied to the detection of phytoplankton in inland waters’, Rev. Bras. Eng. Agrícola e Ambient., vol. 19, no. 3, pp. 259-265. https://doi.org/10.1590/1807-1929/agriambi.v19n3p259-265

Ritchie, J.C., Zimba, P. V. & Everitt, J.H. 2003, ‘Remote Sensing Techniques to Assess Water Quality’, Photogramm. Eng. Remote Sens., vol. 69, pp. 695–704. https://doi.org/10.14358/PERS.69.6.695

RStudio Team 2018, ‘RStudio: Integrated Development Environment for R’,v 1.1.463, RStudio Team, Boston.

Rudorff, C.M., Novo, E.M.L.M., Galvão, L.S., Pereira Filho, W. 2007’, ‘Análise derivativa de dados hiperespectrais medidos em nível de campo e orbital para caracterizar a composição de águas opticamente complexas na Amazônia’, Acta Amaz., vol. 37, pp. 269–280. https://doi.org/10.1590/s0044-59672007000200014

Rundquist, D.C., Han, L., Schalles, J.F. & Peake, J.S. 1996, ‘Remote measurement of algal chlorophyll in surface waters: The case for the first derivative of reflectance near 690 nm’, Photogramm. Eng. Remote Sensing, vol. 62, pp. 195–200.

Schalles, J.F. 2006, ‘Optical Remote Sensing Techniques to Estimate Phytoplankton Chlorophyll a Concentrations in Coastal’ in L. Richardson & E. LeDrew (eds), Remote Sensing of Aquatic Coastal Ecosystem Processes, Springer, Dordrecht, pp. 27–79. https://doi.org/10.1007/1-4020-3968-9_3

Toming, K., Kutser, T., Laas, A., Sepp, M., Paavel, B. & Nõges, T. 2016, ‘First Experiences in Mapping Lake Water Quality Parameters with Sentinel-2 MSI Imagery’, Remote Sens., vol. 8, p. 640. https://doi.org/10.3390/rs8080640

Tsai, F. & Philpot, W. 1998, ‘Derivative analysis of hyperspectral data’, Remote Sens. Environ., vol. 66, pp. 41–51. https://doi.org/10.1016/S0034-4257(98)00032-7

Van Der Meer, F. 2000, ‘Spectral curve shape matching with a continuum removed CCSM algorithm’, Int. J. Remote Sens., vol. 21, pp. 3179–3185. https://doi.org/10.1080/01431160050145063

Watanabe, F., Alcântara, E., Rodrigues, T., Imai, N., Barbosa, C. & Rotta, L. 2015, ‘Estimation of Chlorophyll-a Concentration and the Trophic State of the Barra Bonita Hydroelectric Reservoir Using OLI/Landsat-8 Images’, Int. J. Environ. Res. Public Health, vol. 12, pp. 10391–10417. https://doi.org/10.3390/ijerph120910391

Wickham, H. 2016, ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York.

Wickham, H., François, R., Henry, L. & Müller, K. 2021, dplyr: A Grammar of Data Manipulation, v 1.0.6, < https://CRAN.R-project.org/package=dplyr>.

Wickham, H. 2021. tidyr: Tidy Messy Data, v 1.1.3, < https://CRAN.R-project.org/package=tidyr>.

Zheng, G. & DiGiacomo, P.M. 2017, ‘Remote sensing of chlorophyll-a in coastal waters based on the light absorption coefficient of phytoplankton’, Remote Sens. Environ., vol. 201, pp. 331–341. https://doi.org/10.1016/j.rse.2017.09.008

Published

2021-06-16

Issue

Section

Environmental Sciences