Assessment of the Potentiality to the Debris-Flow Occurrence from Physiographic and Morphometrics Parameters: a Case Study in Santo Antônio Basin (Caraguatatuba, São Paulo State, Brazil)
DOI:
https://doi.org/10.11137/1982-3908_2021_44_43313Keywords:
Hydrogeomorphological processes, Serra do Mar, Physical environment attributesAbstract
This work aims to evaluate the potential for the debris-flow triggering from Santo Antônio hydrographic basin, located in the Serra do Mar region on North Coast of the State of São Paulo, Brazil, based on physiographic attributes, rainfall data, and morphometric parameters. For this purpose, hydrographic basin techniques were applied, assessing the vulnerability to the debris flow from geomorphological, geological, climatic, and anthropic aspects, and morphometric parameters relevant to the triggering of these processes in watersheds were calculated. Seven physiographic units were identified, which supported the understanding of geological and geomorphological aspects of the basin: coastal plains; river plains; colluvium and talus ramps; escarpments of Serra do Mar; upland of Paraitinga; mountainous relief and hillocks domain. The sub-basins located in steep sections of the relief, with high slopes, valleys, and channels docked, high drainage densities present higher values in the morphometric parameters, indicating a greater potential for triggering and occurrence of debris-flow processes. The joint analysis of physiographic compartmentalization with the identification of relief features, slope, amplitude, valley, slope shapes and morphometric parameters, is extremely relevant to recognize hydrographic basins susceptible to debris flows, as it integrates, and correlates aspects of the physical environment considered to trigger in the occurrence of these processes.
References
Alves, J.M.P. & Castro, P.T.A. 2003, ‘Influência de feições geológicas na morfologia da bacia do rio do Tanque (MG) baseada no estudo de parâmetros morfométricos e análise de padrões de lineamentos’, Revista Brasileira de Geociências, vol. 33, no. 2, pp. 117-24.
Augusto Filho, O. 1993, ‘O estudo das corridas de massa em regiões serranas tropicais: um exemplo de aplicação no município de Ubatuba, SP’, Proceedings of Congresso Brasileiro de Geologia de Engenharia e Ambiental, pp. 63-72.
Boardman, J. 2016. ‘The value of Google Earth™ for erosion mapping’, Catena, vol. 143, pp. 123–7. https://doi.org/10.1016/j.catena.2016.03.031
Cerri, R.I., Reis, F.A.G.V., Gramani, M., Gabelini, B.M., Zaine, J.E., Sisto, F.P. & Giordano, L.C. 2018, ‘Análise da influência de atributos fisiográficos e morfométricos na definição da suscetibilidade de bacias hidrográficas à ocorrência de corridas de massa’, Geologia USP (Série Científica), vol. 18, pp. 35-50. https://doi.org/10.11606/issn.2316-9095.v18-133737
Chen, C.Y. & Yu, F.C. 2011, ‘Morphometric analysis of debris flows and their source areas using GIS’, Geomorphology, vol. 129, pp. 387-97. https://doi.org/10.1016/j.geomorph.2011.03.002
Collins, B. & Znidarcic, D. 1997, ‘Triggering Mechanisms of Rainfall Induced Debris Flows’. Proceedings of Pan-American Symposium on Landslides, pp. 277-86.
Companhia de Pesquisa de Recursos Minerais 1982, ‘Geological map of Caraguatatuba Sheet’, 1:50,000 scale.
CPRM - vide Companhia de Pesquisa de Recursos Minerais.
Crozier, M.J. 1986, ‘The climate-landslide couple: A southern hemisphere perspective’ in Matthews et al. Rapid Mass Movement as a Source of Climatic Evidence for the Holocene: Palaeoclimate Research, Gustav Fischer Verlag, Stuttgart, vol. 19, pp. 333-54.
Cruz, O. 1974, ‘A Serra do Mar e o litoral na área de Caraguatatuba-SP - contribuição à geomorfologia litorânea tropical’, PhD Thesis, Universidade de São Paulo, São Paulo.
De Scally, F., Slaymaker, O. & Owens, I. 2001, ‘Morphometric Controls and Basin Response in the Cascade Mountains’, Geografiska Annaler, vol. 83A, pp. 117-30. https://doi.org/10.1111/j.0435-3676.2001.00148.x
Dowling, C. & Santi, P., 2013, ‘Debris flows and their toll on human life: a global analysis of
debris flow fatalities from 1950 to 2011’, Natural Hazards, pp. 1–25.
EMPLASA - vide Empresa Paulista de Planejamento Metropolitano S/A.
Empresa Paulista de Planejamento Metropolitano S/A 2011, ‘Projeto Mapeia São Paulo – Vale do Paraíba e Litoral Norte: Orthophotos 2011’, 1:10,000 scale.
Gartner, J.E., Cannon, S.H., Santi, P.M. & Dewolfe, V.G. 2008, ‘Empirical models to predict the volumes of debris flows generated by recently burned in the western U.S.’, Geomorphology, vol. 96, pp. 339-54. https://doi.org/10.1016/j.geomorph.2007.02.033
Gramani, MF. 2001, ‘Caracterização geológica-geotécnica das corridas de detritos (“Debris Flows”) no Brasil e comparação com alguns casos internacionais’, Marter Thesis, Universidade de São Paulo.
Guidicini, G. & Ywasa, O.U. 1976, Ensaio de Correlação entre Pluviosidade e Escorregamento em meio tropical úmido, IPT, Publicação 1080, São Paulo.
Horton, R.E. 1945, ‘Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology’, Geological Society of America Bulletin, vol. 56, no. 3, pp. 275-370.
IBGE - vide Instituto Brasileiro de Geografia e Estatística.
Instituto Brasileiro de Geografia e Estatística 1974, ‘Caraguatatuba Sheet: SF-23-Y-D-VI-1’, 1:50,000 scale.
Instituto Brasileiro de Geografia e Estatística 2013, Manual Técnico de Uso da Terra, IBGE, Rio de Janeiro.
Jakob, M. 1996, ‘Morphometric and geotechnical controls of debris flow frequency and magnitude in southwestern British Columbia’, PhD Thesis, University of British Columbia.
Jakob, M. & Hungr, O. 2005, ‘Introduction’, in Jakob, M. & Hungr, O. (eds), Debris-flow hazards and related phenomena, Springer-Praxis, Chichester, pp. 1–7.
Kang, S. & Lee, S.R. 2018, ‘Debris flow susceptibility assessment based on an empirical approach in the central region of South Korea’, Geomorphology, vol. 308, pp. 1-12. https://doi.org/10.1016/j.geomorph.2018.01.025
Kanji, M.A., Cruz, P.T., Massad, F. & Araujo-Filho, H.A. 1997, ‘Basic and Common Characteristics of Debris Flows’, Proceedings of Panamerican Symposium on Landslides, pp. 223- 31.
Kanji, M.A. & Gramani, M.F. 2001, ‘Metodologia para determinação da vulnerabilidade a corridas de detritos em pequenas bacias hidráulicas’ Proceedings of Conferência Brasileira de Estabilidade de Encostas.
Kobiyama, M., Goerl, R.F., Correa, G.P. & Michel, G.P. 2010, ‘Debris flow occurrences in Rio dos Cedros, Southern Brazil: meteorological and geomorphic aspects’ in D. Wrachien & C.A. Brebbia (eds), Monitoring, Simulation, Prevention and Remediation of Dense and Debris Flows III, WIT Press, Southampton pp. 77–88.
Langbein, W.B. 1947, ‘Topographic characteristics of drainage basins’, Geological Survey water-supply, vol. 968, no. C, pp. 125-57.
Liu, X. & Lei, J. 2003, ‘A method for assessing regional debris flow risk: an application in Zhaotong of Yunnan province (SW China)’, Geomorphology, vol. 52, pp. 181-91. https://doi.org/10.1016/S0169-555X(02)00242-8
Melton, M.A. 1957, ‘An analysis of the relations among elements of climate, surface properties and geomorphology’, PhD Thesis, Columbia University.
Müller, C.V. 1953, A quantitative geomorphic study of drainage basins characteristic in the Clinch Mountain area, Department of Geology, Columbia University.
Ni, J., Wang, G. 1990, ‘Some aspects of the mechanism of debris flow’ in R.H. French (ed.), Hydraulics/Hidrology of Arid Lands (H2AL), pp. 422- 27.
Nery, T.D. 2017a, ‘O uso de parâmetros morfométricos como potencial indicador de ocorrência de fluxos de detritos no litoral norte de São Paulo’, Geosul, vol. 32, no. 63, pp. 179-200.
Nery, T.D. 2017b, ‘O uso de parâmetros morfométricos na avaliação do potencial a geração de corridas de detritos na Bacia do Rio Santo Antônio’, Revista Brasileira de Cartografia, vol. 68, no. 9, pp. 1819-935.
Nettleton, M.I., Martin, S., Hencher, S., Moore, R. 2005, ‘Debris flow types and mechanisms’, in M.G. Winter, Macgregor & F. Shackman (eds), Press. Scottish road network Landslides study summary report, Scottish, p. 1-19.
Rivera Pomés, C.H. 1994, ‘Desenvolvimento de um modelo conceitual para simulação de uma avalanche de detritos (Debris Flow) qualquer’, PhD Thesis, Universidade de São Paulo.
Schumm, S.A. 1956, ‘Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey’, Geological Society of America Bulletin, vol. 67, no. 5, pp. 597-646.
Slaymaker, O. 1988, ‘The distinctive attributes of debris torrents’, Hydrological Sciences, vol. 33, no. 6, pp. 567-73.
Takahashi, T. 2014, Debris flow: mechanics, prediction and Countermeasures, Taylor & Francis Group, London.
Van Steijn, H. 1996, ‘Debris-flow magnitude-frequency relationships for mountainous regions of Central and Northwest Europe’, Geomorphology, vol. 15, no. 3-4, pp. 259-73. https://doi.org/10.1016/0169-555X(95)00074-F
Vandine, D.F. 1985, ‘Debris flows and debris torrents in the Southern Canadian Codillera’, Canadian Geotechnical Journal, vol. 22, no. 1, pp. 44-68.
Vargas, M. 1999, ‘Revisão histórico-conceitual dos escorregamentos da Serra do Mar’, Revista Solos e Rochas, vol. 22, no. 1, pp. 53-83.
Wilford, D.J., Sakals, M.E., Innes, J.L, Sidle, R.C. & Bergerud, W.A. 2004, ‘Recognition of debris flow, debris flood and flood hazard through watershed morphometrics’, Landslides, vol. 1, pp. 61-6. https://doi.org/10.1007/s10346-003-0002-0
Vieira, B.C., Gramani, M.F., 2015, ‘Serra do Mar: the most “tormented” relief in Brazil’ in B.C. Vieira, A.A.R. Salgado & L.J.C. Santos (eds), Landscapes and Landforms of Brazil, World Geomorphological Landscapes, Springer, p. 285-97.
Vieira, B.C., Matos de Souza, L., Alcalde, A.L, Dias, V.C. Bateira, C & Martins, T.D. 2019, ‘Debris flows in southeast Brazil: susceptibility assessment for watersheds and vulnerability assessment of buildings’, Proceedings of 7th International Conference on Debris-Flow Hazards Mitigation, pp. 597-604.
Zaine, J.E. 2011, ‘Método de fotogeologia aplicado a estudos geológico-geotécnicos: ensaio em Poços de Caldas, MG’, Professorship Thesis, Universidade Estadual Paulista.
Downloads
Published
Issue
Section
License
This journal is licensed under a Creative Commons — Attribution 4.0 International — CC BY 4.0, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.