Spatial Variability of Saturated Hydraulic Conductivity in a Karstic Environmental Protection Area

Emerson Vinicius Valadares, José Augusto Costa Gonçalves, Marina Souza Matos, Peter Marshall Fleming


Saturated hydraulic conductivity (Ksat) is a fundamental property to understand water and solute dynamics in saturated and unsaturated soils. The objective of this study is to present and assess the results of a statistical analysis of the data obtained from the determination of the permeability of a variety of soils (Argisols, Latosols, Gleysols, and Cambisols) of the Lagoa Santa Karst Environmental Protection Area (State of Minas Gerais, Brazil). Software R version 4.0.4 was used for the statistical analyses. Argisol, Cambisol, and Gleysol samples yielded normal conductivity distributions at depth, with mean values of 1.16 x 10-1 m/d, 6.14 x 10-2 m/d, and 1.95 x 10-3 m/d, respectively. Regarding the log-normal distributed Latosol samples P48 and P52 and Gleysol sample P54sup, it was concluded that probability, respectively of 85.72%, 96.55%, and 47.37%, exists for hydraulic conductivity values between 0.1 x 10-1 m/d and 4 x 10-1 m/d to occur. Studies or criteria to establish Ksat values that should be really representative of the whole study area have not been found. It was preferable to characterize Ksat in terms of levels of probability of occurrence rather than values, such as the mean or median, in order to represent an area that will be subject to the same water flow control operations (irrigation and drainage practices, leaching and erosion control, etc.). Therefore, it is not appropriate to assume a normal distribution of saturated hydraulic conductivity values for areas with the characteristics of Lagoa Santa.


Saturated hydraulic conductivity; Ksat; Groundwater

Full Text:



Abbasi, F., Jacques, D., Simunek, J., Feyen, J. & Van Genuchten, M.T. 2013, ‘Inverse estimation of soil hydraulic and solute transport parameters from transient field experiments: Heterogeneous soil’, American Society of Agricultural Engineers, vol. 46, no. 4, pp. 1097-111, DOI:10.13031/2013.13961.

Alagna, V., Bagarello, V., Di Prima, S. & Iovino, M. 2016, ‘Determining hydraulic properties of a loam soil by alternative infiltrometer techniques’, Hydrological Processes, vol. 30, no. 2, pp. 263-75, DOI:10.1002/hyp.10607.

Alagna, V., Bagarello, V., Di Prima, S., Guaitoli, F., Iovino, M., Keesstra, S. & Cerdà, A. 2019, ‘Using Beerkan experiments to estimate hydraulic conductivity of a crusted loamy soil in a Mediterranean vineyard’, Journal of Hydrology and Hydromechanics, vol. 67, no. 2, pp. 191-200, DOI:10.2478/johh-2018-0023.

Auler, A.S. 1994, ‘Hydrogeological and hidrochemical characterization of The Matozinhos - Pedro Leopoldo Karst, Brazil’, Master thesis, Faculty of the Department of Geography and Geology, Western Kentucky University.

Azam, M.G., Zoebisch, M.A., Wickramarachchi, K.S. & Ranamukarachchi, S.L. 2009, ‘Site-specific soil hydraulic quality index to describe the essential conditions for the optimum soil water regime’, Canadian Journal of Soil Science, vol. 89, no. 5, pp. 645-56, DOI:10.4141/CJSS08089.

Bagarello, V., Baiamonte, G. & Caia, C. 2019, ‘Variability of near-surface saturated hydraulic conductivity for the clay soils of a small Sicilian basin’, Geoderma, vol. 340, pp. 133-45, DOI:10.1016/j.geoderma.2019.01.008.

Bagarello, V., Castellini, M., Di Prima, S. & Iovino, M. 2014, ‘Soil hydraulic properties determined by infiltration experiments and different heights of water pouring’, Geoderma, vol. 213, no. 5, pp. 492-501, DOI:10.1016/j.geoderma.2013.08.032.

Baiamonte, G., Bagarello, V., D'asaro, F. & Palmeri, V. 2017, ‘Factors influencing point measurement of near surface saturated soil hydraulic conductivity in a small Sicilian basin’, Land Degradation & Development, vol. 28, no. 3, pp. 970-82, DOI:10.1002/ldr.2674.

Cadima, Z.A., Libardi, P.L. & Reichardt, K. 1980, ‘Variabilidade espacial da condutividade hidráulica em um Latossolo Vermelho-Amarelo textura média, no campo’, Revista Brasileira de Ciência do Solo, Campinas, vol. 4, no. 1, pp. 63-6.

Castellini, M., Stellacci, A.M., Tomaiuolo, M. & Barca, E. 2019, ‘Spatial Variability of Soil Physical and Hydraulic Properties in a Durum Wheat Field: An Assessment by the BEST-Procedure’, Water, vol. 11, no. 7, e1434, DOI:10.3390/w11071434.

Cherubin, M.R., Karlen, D.L., Franco, A.L.C., Tormena, C.A., Cerri, C.E.P., Davies, C.A. & Cerri, C.E.P. 2016, ‘Soil physical quality response to sugarcane expansion in Brazil’, Geoderma, vol. 267, pp. 156-68, DOI:10.1016/j.geoderma.2016.01.004.

Di Prima, S., Castellini, M., Abou Najm, M.R., Stewart, R.D., Angulo-Jaramillo, R., Winiarski, T. & Lassabatere, L. 2019, ‘Experimental assessment of a new comprehensive model for single ring infiltration data’, Journal of Hydrology, vol. 573, pp. 937-51, DOI:10.1016/j.jhydrol.2019.03.077.

Fernández-Gálvez, J., Pollacco, J.A.P., Lassabatere, L., Angulo-Jaramillo, R. & Carrick, S. 2019, ‘A general Beerkan Estimation of Soil Transfer parameters method predicting hydraulic parameters of any unimodal water retention and hydraulic conductivity curves: Application to the Kosugi soil hydraulic model without using particle size distribution data’, Advances in Water Redoures, vol. 129, pp. 118-30, DOI:10.1016/j.advwatres.2019.05.005.

Gonçalves, A.D.M.A. & Libardi, P.L. 2013, ‘Análise da determinação da condutividade hidráulica no solo pelo método do perfil instantâneo’, Revista Brasileira de Ciência do Solo, vol. 37, no. 5, pp. 1174-84, DOI:10.1590/S0100-06832013000500007.

Guellouz, L., Askri, B., Jaffré, J. & Bouhlila, R. 2020, ‘Estimation of the soil hydraulic properties from field data by solving an inverse problem’, Scientific Reports, vol. 10, no. 1, DOI:10.1038/s41598-020-66282-5.

Hosseini, S.M.M.M., Ganjian, N. & Pisheh, Y.P. 2011, ‘Estimation of the water retention curve for unsaturated clay’, Canadian Journal of Soil Science, vol. 91, no. 4, pp. 543-9, DOI:10.4141/cjss10014.

Keller, T., Sutter, J.A., Nisse, K. & Rydberg, T. 2012, ‘Using field measurement of saturated soil hydraulic conductivity to detect low-yielding zones in three Swedish fields’, Soil & Tillage Research, vol. 124, pp. 68-77, DOI:10.1016/j.still.2012.05.002.

Khaledian, M.R., Shabanpour, M. & Alinia, H. 2016, ‘Saturated hydraulic conductivity variation in a small garden under drip irrigation’, Geosystem Engineering, vol. 19, no. 6, pp. 266-74, DOI:10.1080/12269328.2016.1188030.

Kohler, H.C. 1989, ‘Geomorfologia cárstica na região de Lagoa Santa-MG’, PhD thesis, Universidade de São Paulo.

Koppen, W. 1948, Climatologia: con un estudio de los climas de la tierra, Fondo de Cultura Econômica, México.

Kreiselmeier, J., Chandrasekhar, P., Weninger, T., Schwen, A., Julich, S., Feger, K.-H. & Schwärzel, K. 2020, ‘Temporal variations of the hydraulic conductivity characteristic under conventional and conservation tillage’, Geoderma, vol. 362, e114127, DOI:10.1016/j.geoderma.2019.114127.

Kumar, S., Sekhar, M., Reddy, D.V. & Mohan Kumar, M.S. 2010, ‘Estimation of soil hydraulic properties and their uncertainty: comparison between laboratory and field experiment’, Hydrological Processes, vol. 24, no. 23, pp. 3426-35, DOI:10.1002/hyp.7775.

Leij, F.J., Romano, N., Palladino, M., Schaap, M.G. & Coppola, A. 2004, ‘Topographical attributes to predict soil hydraulic properties along a hillslope transect’, Water Resources Research, vol. 40, no. 2, DOI:10.1029/2002WR001641.

Lozano-Baez, S.E., Cooper, M., Ferraz, S.F.B., Ribeiro Rodrigues, R., Pirastru, M. & Di Prima, S. 2018, ‘Previous land use affects the recovery of soil hydraulic properties after forest restoration’, Water, vol. 10, no. 4, e453, DOI:10.3390/w10040453.

Mesquita, M.G.B.F. 2001, ‘Caracterização estatística da condutividade hidráulica saturada do solo’, PhD thesis, Universidade de São Paulo.

Mubarak, I., Angulo-Jaramillo, R., Mailhol, J.C., Ruelle, P., Khaledian, M. & Vauclin, M. 2010, ‘Spatial analysis of soil surface hydraulic properties: Is infiltration method dependent’, Agricultural Water Management, vol. 97, no. 10, pp. 1517-26, DOI:10.1016/j.agwat.2010.05.005.

Papanicolaou, A.N., Elhakeem, M., Wilson, C.G., Burras, C.L., West, L.T., Lin, H., Clark, B. & Oneal, B.E. 2015, ‘Spatial variability of saturated hydraulic conductivity at the hillslope scale: Understanding the role of land management and erosional effect’, Geoderma, vol. 243-244, pp. 58-68, DOI:10.1016/j.geoderma.2014.12.010.

Parkin, T.B. & Robinson, J.A. 1993, ‘Statistical Evolution of median estimators for lognormally distributed variables’, Soil Society of America Journal, vol. 57, no. 2, pp. 317-23, DOI:10.2136/sssaj1993.03615995005700020005x.

Pessoa, P.F.P. 2005, ‘Hidrogeologia dos Aqüíferos Cársticos Cobertos da Região de Lagoa Santa, MG’, PhD thesis, Universidade Federal de Minas Gerais, Belo Horizonte.

Picciafuoco, T., Morbidelli, R., Flammini, A., Saltalippi, C., Corradini, C., Strauss, P. & Bloschl, G. 2019, ‘On the estimation of spatially representative plot scale saturated hydraulic conductivity in an agricultural setting’, Journal of Hydrology, vol. 570, pp. 106-17, DOI:10.1016/j.jhydrol.2018.12.044.

Pinheiro, E.A.R., de Jong van Lier, Q. & Simunek, J. 2019, ‘The role of soil hydraulic properties in crop water use efficiency: A process-based analysis for some Brazilian scenarios’, Agricultural Systems. vol. 173, pp. 364-77, DOI:10.1016/j.agsy.2019.03.019.

Price, K., Jackson, C.R. & Parker, A.J. 2010, ‘Variation of surficial soil hydraulic properties across land uses in the southern Blue Ridge Mountains, North Carolina, USA’, Journal of Hydrology, vol. 383, pp. 256-68, DOI:10.1016/j.jhydrol.2009.12.041.

Reynolds, W.D., Drury, C.F., Tan, C.S., Fox, C.A. & Yang, X.M. 2009, ‘Use of indicators and pore volume-function characteristics to quantify soil physical quality’, Geoderma, vol. 152, no. 3-4, pp. 252-63, DOI:10.1016/j.geoderma.2009.06.009.

Ribeiro, C.M. 1995, O clima no Planalto de Lagoa Santa-MG. Em: Estudos ambientais e propostas de manejo, na região do carste, no Panalto de Lagoa Santa. Projeto FAPEMIG: CEX-1133/90. Relatório Final, parte 2, vol. 1.

Silva, A.B., Moreira, C.V.R. & Auler, A.S. 1987, Estudo da Dinâmica dos recursos hídricos da região cárstica dos municípios de Lagoa Santa, Pedro Leopoldo e Matozinhos. CETEC - Fundação Centro Tecnológico de Minas Gerais, Belo Horizonte.

Shapiro, S.S. & Wilk, M.B. 1965, ‘An analysis of variance test for normality (complete samples)’, Biometrika, vol. 52, no. 3-4, pp. 591-611, DOI:10.2307/2333709.

Viana, H.S., Kohler, H.C. & Tavares, V.P. 1998, APA Carste de Lagoa Santa - Meio Físico, IBAMA/CPRM, Belo Horizonte.

Vieira, L.C.M. 2018, ‘Hidrogeoquímica dos Aquíferos da Região da APA Carste de Lagoa Santa, MG’, Master thesis, Universidade Federal de Minas Gerais, Belo Horizonte.

Viola, M.R., Mello, C.R., Beskow, S. & Norton, L.D. 2013, ‘Applicability of the LASH Model for Hydrological Simulation of the Grande River Basin, Brazil’, Journal of Hydrologic Engineering, vol. 18, no. 12, pp. 1639-52, DOI:10.1061/(ASCE)HE.1943-5584.0000735.

Walpole, R.E., Myers, R.H., Myers, S.L. & Ye, K. 2009, Probabilidade & Estatística para engenharia e ciências, 8th edn, Pearson, São Paulo.

Zhang, X., Zhu, J., Wendroth, O., Matocha, C. & Edwards, D. 2019, ‘Effect of Macroporosity on Pedotransfer Function Estimates at the Field Scale’, Vadose Zone Journal, vol. 18, no. 1, pp. 1-15, DOI:10.2136/vzj2018.08.0151.

Zhou, H., Gomez-Hernandez, J.J. & Li, L. 2014, ‘Inverse methods in hydrogeology: Evolution and recent trends’, Advances in Water Resources, vol. 63, pp. 22-37, DOI:10.1016/J.Advwatres.2013.10.014.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Indexers and Bibliographic Databases

Social Media

SCImago Journal & Country Rank
24th percentile
Powered by  Scopus
Google Scholar
 Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution 4.0 International license.