Mining Induced Ground Motions in a Tailings Dam

Leonardo Santana de Oliveira Dias, Marco Antonio da Silva Braga, Alan de Souza Cunha, Gerrit Olivier, Daniel Monteiro Machado


Mining induced seismicity can expose tailings dams to ground motions with potential to trigger a failure, if the structure reaches a certain level of vibrations that could exceed the seismic coefficient design criteria from pseudostatic analysis. Despite the cited risk, mainly for dams that are closer to open pits, few dams in Brazil are monitored by microseismic systems, and there are no references in the literature about continuous seismic monitoring both in open pit (source) and tailings dam, which represents the motivation of this paper. A microseismic system was commissioned in Cajati Mine, São Paulo, to record seismic events continuously in an array of 16 geophones (14 Hz and 4.5 Hz), installed in boreholes near the open pit (12 sensors) and in the dam (4 sensors), has measured values of PGA (Peak Ground Acceleration) and PGV (Peak Ground Velocity) related to 2,972 induced events from rock removal in the open pit. During the period monitored, the total of 109 events have triggered sensors in both structures, producing 920 seismograms, with the highest values of PGA and PGV of 0.0135 m/s2 (0.1358% of g) and 0.0892 mm/s. The highest PGA value is 36 times lower than the vertical coefficient of 3% of g defined by Brazilian technical standard to dam design criteria, normally used in common pseudostatic analysis from geotechnical engineers. A routine microseismic monitoring brings a new set of valuable actionable data and information to support the management of geotechnical tailings dams’ risks, under the conditions of vibrations induced by mining production.


Microseismic monitoring; Geotechnics; Mining seismicity

Full Text:



Adamo, N., Al-Ansari, N., Sissakian, V., Laue, J. & Knutsson, S. 2020, ‘Dam safety: The question of tailings dams’, Journal of Earth Sciences and Geotechnical Engineering, vol. 11, no.1, pp. 1-26, DOI:10.47260/jesge/1111.

Agurto-Detzel, H., Assumpção, M., Bianchi, M. & Pirchiner, M. 2017, ‘Intraplate seismicity in mid-plate South America: correlations with geophysical lithospheric parameters’, Geological Society, vol. 432, no. 1, pp. 73-90, DOI:10.1144/SP432.5.

Agurto-Detzel, H., Bianchi, M., Assumpção, M., Schimmel, M., Collaço, B., Ciardelli, C., Barbosa, J.R. & Calhau, J. 2016, ‘The tailings dam failure of 5 November 2015 in SE Brazil and its preceding seismic sequence: The 2015 Tailings Dam Failure in SE Brazil’, Geophysical Research Letters, vol. 43, no. 10, pp. 4929-36, DOI:10.1002/2016GL069257

Alves, P.R. 2008, ‘The carbonatite-hosted apatite deposit of Jacupiranga, SE Brazil: styles of mineralization, ore characterization and association with mineral processing’, Master thesis, Missouri University of Science and Technology.

Barros, G. 2001, ‘Reavaliação geoestatística dos recursos/reservas de fosfato da Mina de Cajati, SP’, Dissertação de mestrado, Universidade de São Paulo.

CPRM 2013, Geologia e recursos minerais da Folha Eldorado Paulista SG.22-X-B-VI, viewed 1 February 2018, <>.

Cajati 2020, Google Maps, viewed 11 April 2020, .

Eaton, D.W., Baan, M. van der & Ingelson, A. 2016, ‘Terminology for fluid-injection induced seismicity in oil and gas operations’, CSEG Recorder, vol. 41, no. 4, pp. 24-8.

Eletrobras 2003, Critérios de projeto civil de usinas hidrelétricas, Eletrobras, Rio de Janeiro.

Emanov, A.F., Emanov, A.A., Fateev, A.V., Leskova, E.V., Shevkunova, E.V. & Podkorytova, V.G. 2014, ‘Mining-induced seismicity at open pit mines in Kuzbass (Bachatsky earthquake on June 18, 2013)’, Journal of Mining Science, vol. 50, no. 2, pp. 224-8, DOI:10.1134/S1062739114020033.

Errington, A. 2006, ‘Sensor placement for microseismic event location’, Master Thesis, University of Saskatchewan, Canada.

Faria Junior, A. de, Tomi, G. de, Sant’Agostino, L.M. & Costa, J.F.C.L. 2010, ‘O impacto do tipo de amostragem no controle de qualidade na lavra’, Rem: Revista Escola de Minas, vol. 63, no. 2, pp. 385-92, DOI:10.1590/S0370-44672010000200025.

Foulger, G.R., Wilson, M.P., Gluyas, J.G., Julian, B.R. & Davies, R.J. 2018, ‘Global review of human-induced earthquakes’, Earth-Science Reviews, vol. 178, pp. 438-514, DOI:10.1016/j.earscirev.2017.07.008.

Goldswain, G. 2020, ‘Advances in seismic monitoring technologies’, Proceedings of the Second International Conference on Underground Mining Technology, Australian Centre for Geomechanics, Perth, pp. 173-88, viewed 17 July 2021, .

Klose, C.D. 2013, ‘Mechanical and statistical evidence of the causality of human-made mass shifts on the Earth’s upper crust and the occurrence of earthquakes’, Journal of Seismology, vol. 17, no. 1, pp. 109-35, DOI:10.1007/s10950-012-9321-8.

Kuckartz, B.T. 2017, ‘Análise de expansão de cava com múltiplas restrições de superfície sob incerteza geológica’, Master thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre.

Lima, R.E., Lima Picanço, J., Silva, A.F. & Acordes, F.A. 2020, ‘An anthropogenic flow type gravitational mass movement: the Córrego do Feijão tailings dam disaster, Brumadinho, Brazil’, Landslides, vol. 17, no. 12, pp. 2895-906, DOI:10.1007/s10346-020-01450-2.

Ma, J., Zhao, G., Dong, L., Chen, G. & Zhang, C. 2015, ‘A comparison of mine seismic discriminators based on features of source parameters to waveform characteristics’, Shock and Vibration, vol. 2015, no. 1, p. 10, DOI:10.1155/2015/919143.

Mendecki, A.J. 1997, Seismic monitoring in mines, Springer Dordrecht.

Mendecki, A.J., Lynch, R.A. & Malovichko, D.A. 2010, ‘Routine micro-seismic monitoring in mines’, Australian Earthquake Engineering Society 2010 Conference, Perth, Western Australia, pp. 33.

Nimbalkar, S., Annapareddy, V.S.R. & Pain, A. 2018, ‘A simplified approach to assess seismic stability of tailings dams’, Journal of Rock Mechanics and Geotechnical Engineering, vol. 10, no. 6, pp. 1082-90, DOI:10.1016/j.jrmge.2018.06.003.

Oliveira, L.A. 2021, ‘Caracterização e monitoramento de barragens de rejeito através de métodos geofísicos: Eletrresistividade e microssísmica na barragem B1 de Cajati, São Paulo’, Master thesis, Universidade Federal do Rio de Janeiro.

Oliveira, S.B. de & Sant’Agostino, L.M. 2020, ‘Lithogeochemistry and 3D geological modeling of the apatite-bearing Mesquita Sampaio beforsite, Jacupiranga alkaline complex, Brazil’, Brazilian Journal of Geology, vol. 50, no. 3, e20190071, DOI:10.1590/2317-4889202020190071.

Olivier, G., Brenguier, F., de Wit, T. & Lynch, R. 2017, ‘Monitoring the stability of tailings dam walls with ambient seismic noise’, The Leading Edge, vol. 36, no. 4, pp. 282-368, DOI:10.1190/tle36040350a1.1.

Ozkan, M.Y. 1998, ‘A review of considerations on seismic safety of embankments and earth and rock-fill dams’, Soil Dynamics and Earthquake Engineering, vol. 17, no. 7-8, pp. 439-58, DOI:10.1016/S0267-7261(98)00035-9.

Saito, M.M., Barros, G., Bonás, T.B. & Bettencourt, J.S. 2004, ‘Mapeamento geológico de detalhe da mina Cajati (SP): modelo conceitual e aplicação à lavra, produção e beneficiamento’, Congresso Brasileiro de Geologia, SBG, Araxá - MG.

Shuran, L. & Shujin, L. 2011, ‘The discussion about the safety management of the mine tailings pond near the mine stope’, Procedia Engineering, vol. 26, pp. 1901-6, DOI:10.1016/j.proeng.2011.11.2382.

Silva, J., Sianato, P., Lusk, B. & Eltschlager, K. 2017, Blasting effects on coal refuse impoundment structures, S12AC20021, Final Report, University of Kentucky, Lexington, viewed 7 October 2021, .

Singh, R., Roy, D. & Das, D. 2007, ‘A correlation for permanent earthquake-induced deformation of earth embankments’, Engineering Geology, vol. 90, no. 3-4, pp. 174-85.

Sousa, G.M. de, Ferreira, S.A. & Gomes, R.C. 2021, ‘Methodology for automated monitoring of induced vibrations in tailings dams built upstream’, Geotechnical and Geological Engineering, pp. 1-10, DOI:10.21203/

Talwani, P. 2017, ‘On the nature of intraplate earthquakes’, Journal of Seismology, vol. 21, no. 1, pp. 47-68, DOI:10.1007/s10950-016-9582-8.

Wu, W., Zhao, Z. & Duan, K. 2017, ‘Unloading-induced instability of a simulated granular fault and implications for excavation-induced seismicity’, Tunnelling and Underground Space Technology, vol. 63, pp. 154–61, DOI:10.1016/j.tust.2017.01.002.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Indexers and Bibliographic Databases

Social Media

SCImago Journal & Country Rank
24th percentile
Powered by  Scopus
Google Scholar
 Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution 4.0 International license.