Integrating Qualitative and Quantitative Methods to Evaluate Performance of the Brazilian Network for Continuous Global Navigation Satellite System (GNSS) Monitoring (RBMC)

Sergio Orlando Antoun Netto, Bruna Quintan Fortunato, André Geffer Bonato


We discuss a qualitative analysis of the efficiency of the Brazilian Network for Continuous Global Navigation Satellite System Monitoring (RBMC) using the Complex Holographic Assessment of Paradoxical Problems method (CHAP²), whose premise is the organization of intersubjectivity facilitated by the use of visual representation of structured knowledge (conceptual mapping) to increase the degree of consciousness to manage the paradoxes resulting from the complexity of living systems. We also describe a quantitative evaluation using Data Envelopment Analysis (DEA) allowing a ranking in terms of efficiency for further assessment by a professional of the area. The outcome of this study would be useful for IBGE (Brazilian Institute of Geography and Statistics) managers to be aware, for instance, of the suppliers and manufacturers of equipment available (receiver and geodetic antenna, Internet connection and constant supply of electricity) in efficient and ineffective stations, to guide new acquisitions, among other applications. 


Efficiency; Cognitive mapping; Data envelopment analysis

Full Text:



Antoun Netto, S.O. 2012, ‘O uso de Multimetodologia para a determinação de Metas e Indicadores de Desenvolvimento Municipal na Área da Saúde’. Tese (Doutorado), Universidade Federal do Rio de Janeiro.

Banker, R.D., Charnes A. & Cooper, W.W. 1984, ‘Some models for estimating technical and scale inefficiencies in Data Envelopment Analysis’, Management Science, vol. 30, no. 9, pp. 1031-1142, DOI:10.1287/mnsc.30.9.1078.

Behars, J.O. 1985, Unity and Multiplicity: Multilevel Consciousness of Self in Hypnosis, Psychiatric Disorder and Mental Health, Bruner Meisel U, New York.

Briñol, P. & DeMarree, K.G. (eds). 2012, Social Metacognition, Psychology Press, East Sussex.

Castellani, B. & Hafferty, F. 2010, Sociology and Complexity Science, Springer, Berlin.

Charnes, A., Cooper, W.W. & Rhodes, E. 1978, ‘Measuring efficiency of decision-making units’, European Journal of Operational Research, vol. 2, no. 6, pp. 429-444, DOI:10.1016/0377-2217(78)90138-8.

Estellita Lins, M.P., Antoun Netto, S.O. & de Castro Lobo, M.S. 2019, ‘Multimethodology applied to the evaluation of Healthcare in Brazilian municipalities’, Health Care Management Science, vol. 22, pp. 197–214, DOI;10.1007/s10729-018-9432-z.

Estellita Lins, M.P., Pamplona, L., Estellita Lins, A.B. & Lyra, K.F. 2021, ‘Metacognitive attitude for decision-making at a University Hospital’, International Transactions in Operational Research, vol. 1, pp. 1-21, DOI:10.1111/itor.12975.

Färe, R., Grosskopf, S. & Lovell, C.A.K. 1985, The Measurement of Efficiency of Production, Springer, Dordrecht.

Färe, R. & Lovell, C.A.K. 1978, ‘Measuring the Technical Efficiency of Production’, Journal of Economic Theory, vol. 19, no. 1, pp. 150-162, DOI:10.1016/0022-0531(78)90060-1.

Franceschini, F., Galetto, M., Maisano, D. & Mastrogiacomo, L. 2008, Properties of performance indicators in operations management – a reference framework. International Journal of Productivity and Performance Management, vol. 57, no. 2, pp. 137–155, DOI:10.1108/17410400810847401.

Golany, B. & Roll, Y. 1989, ‘An Application Procedure for DEA, OMEGA’, International Journal of Management Science, vol. 17, no. 3, pp. 237-250.

Hyerle, D. 2009, Visual Tools for transforming Information into Knowledge, Corwin Press, Thousand Oaks.

IBGE – Instituto Brasileiro de Geografia e Estatística 2017, viewed 06 January 2017, .

Koopmans, T.C. 1951, ‘Analysis of production as an efficient combination of activities’, in T.C. Koopmans (ed.), Activity analysis of production and allocation, Cowles commission. Wiley, New York, pp. 33–97.

Lins, M.E.; Oliveira, L.B.; da Silva, A.C.M.; Rosa, L.P.; Pereira, A.O. 2011. Performance assessment of Alternative Energy Resources in Brazilian power sector using Data Envelopment Analysis. Renewable & Sustainable Energy Reviews, v. 16, p. 898-903.

Lins, M.P.E. & Antoun Netto, S.O. 2018, Estruturação de Problemas Sociais Complexos: Teoria da Mente, Mapas Metacognitivos e Modelos de Apoio à Decisão, Editora Interciência Rio de Janeiro, Rio de Janeiro.

Malle, B.F. & Hodges, S.D., 2005, Other Minds, How Humans Bridge the Divide Between Self and Others, Guilford, New York.

Midgley, G. 2000, Systemic Intervention, Philosophy, Methodology and Practice, Kluwer Academic, Dordrecht.

Mingers, J. 2006, Realising Systems Thinking: Knowledge and Action in Management Science, Springer, Berlin.

Mobus, J.E. & Kalton, M.C. 2015, Principles of Systems Science, Springer, Berlin.

Monico, J.F.G. 2007, Posicionamento pelo GNSS – Descrição, Fundamentos e Aplicações, Editora Unesp, São Paulo.

Novak, J.D. 1998, Learning, creating, and using knowledge: concept maps as facilitative tools in schools and corporations, Lawrence Erbaum Associates, Mahwah.

Okada, A., Buckingham, S. & Sherborne, T. 2014, Knowledge Cartography: software tools and mapping techniques, 2nd edn, Springer-Verlag, London.

Pereira, T.F., Montevechi, J.A.B., Miranda, R.C. & Friend, J.D. 2014, ‘Integrating soft systems methodology to aid simulation conceptual modeling’, International Transactions in Operational Research, vol. 22, no. 2, pp. 265–285, DOI:10.1111/itor.12133.

Rosenhead, J. & Mingers, J. 2001, Rational Analysis for a Problematic World Revisited: Problem Structuring Methods for Complexity, Uncertainty and Conflict, 2nd edn, Wiley, Chichester.

Ruiz-Moreno, L., Sonzogno, M.C., Batista, S.H.S.E. & Batista, N.A. 2007, ‘Mapa conceitual: ensaiando critérios de análise’, Ciência Educação, vol. 13, no. 3, pp. 453–463, DOI:10.1590/S1516-73132007000300012.

Scheel, H. 2001, ‘Undesirable outputs in efficiency valuations’, European Journal of Operational Research, vol. 132, no. 2, pp. 400–410, DOI:10.1016/S0377-2217(00)00160-0.

Seiford, L.M. & Zhu, J. 2002 ‘Modeling undesirable factors in efficiency evaluation’, European Journal of Operational Research, vol. 142, no. 1, pp. 16–20, DOI:10.1016/S0377-2217(01)00293-4.

Sherman, H.D. & Zhu, J. 2006, Service productivity management: improving service performance using data envelopment Analysis (DEA), Springer, Boston.

Stewart, T.J. 1996, ‘Relationships Between Data Envelopment Analysis and Multicriteria Decision Analysis’, Journal of the Operations Research Society, vol. 47, no. 5, pp. 654-665, DOI:10.2307/3010016.

Suchman, A.L., Sluyter, D.J. & Williamson, P.R. 2011, Leading Change in Healthcare—Transforming Organizations Using Complexity, Positive Psychology and Relationship-Centered Care, Radcliffe Publishing, Abingdon.

Tarricone, P. 2011, The Taxonomy of Metacognition, Psychology Press, East Sussex.

Tone, K. 2001, ‘A slacks-based measure of efficiency in data envelopment analysis’, European Journal of Operational Research, vol. 130, no. 3, pp. 498-509, DOI:10.1016/S0377-2217(99)00407-5.

Vekiri, I. 2002, ‘What is the value of graphical displays in learning?’ Educational Psychology Review, vol. 14, no. 3, pp. 261–312, DOI:10.1023/A:1016064429161.

Watkins, J. & Watkins, H. 1997, Ego States: Theory and Therapy, WW Norton and Company, New York.

Wu, J., Liang, L. & Song, M. 2010, ‘Performance based clustering for benchmarking of container ports: an application of DEA and cluster analysis technique’, International Journal of Computational Intelligence Systems, vol. 3, no. 6, pp. 709–722.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Indexers and Bibliographic Databases

Social Media

SCImago Journal & Country Rank
24th percentile
Powered by  Scopus
Google Scholar
 Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution 4.0 International license.