Spatial and Temporal Variability of Groundwater Quality Parameters in the Bauru Aquifer System (São Paulo State, Brazil)
DOI:
https://doi.org/10.11137/1982-3908_2023_46_53748Keywords:
Contamination, Water resources management, KrigingAbstract
Chemical substances can be harmful to humans when present in water at concentrations above the limits permitted by legislation. The present study analyzes the spatial-temporal variability of barium, chromium, nitrate and vanadium concentrations in groundwaters of the Bauru Aquifer System (BAS). For this purpose, triennial water-quality monitoring data (2016-2018) were acquired from CETESB (São Paulo Environmental Company). Descriptive statistical methods and geostatistical techniques (kriging) were applied. Results attest the spatial dependence of the water-quality parameters along time. Variograms indicate spatial determination coefficients (R²) between 0.435 and 0.961. The municipality of Presidente Prudente has the worst scenario, with estimates chromium and vanadium above the Maximum Allowed Values (MAV). The fact that most of licensed wells exploit water for urban supply makes the results worrying and shows up that public agencies must take some actions to decrease these concentrations.
References
Akoto, O., Adopler, A., Tepkor, H.E. & Opoku, F. 2021, 'A comprehensive evaluation of surface water quality and potential health risk assessments of Sisa river, Kumasi', Groundwater for Sustainable Development, vol. 15, 100654, DOI:10.1016/j.gsd.2021.100654.
Bertolo, R., Bourotte, C., Hirata, R., Marcolan, L. & Sracek, O. 2011a, 'Geochemistry of natural chromium occurrence in a sandstone aquifer in Bauru Basin, state of São Paulo, Brazil', Applied Geochemistry, vol. 26, no. 8, pp. 1353-63, DOI:10.1016/j.apgeochem.2011.05.009.
Bertolo, R., Bourotte, C., Marcolan, L., Oliveira, S. & Hirata, R. 2011b, 'Anomalous content of chromium in a Cretaceous sandstone aquifer of the Bauru Basin, state of São Paulo, Brazil', Journal of South American Earth Sciences, vol 31, no. 1, pp. 69-80, DOI:10.1016/j.jsames.2010.10.002.
Bertolo, R., Hirata, R. & Aly Junior, O. 2019, 'Método de valoração da água subterrânea impactada por atividades contaminantes no Estado de São Paulo', Águas Subterrâneas, vol. 33, no. 3, pp. 303-13, DOI:10.14295/ras.v33i3.29479.
Brasil 2021, Portaria GS/MS n° 888, de 04 de maio de 2021, Diário Oficial da União, viewed 13 May 2022, <https://www.in.gov.br/en/web/dou/-/portaria-gm/ms-n-888-de-4-de-maio-de-2021-318461562>.
Brasil 2011, Portaria n° 2.914, de 12 de dezembro de 2011, Ministério da Saúde, viewed 13 May 2022, <https://bvsms.saude.gov.br/bvs/saudelegis/gm/2011/prt2914_12_12_2011.html>.
Brasil 2008, Resolução CONAMA n° 396, de 3 de abril de 2008, Diário Oficial da União, viewed 21 May 2022, <https://tinyurl.com/mr2hnc3b>.
Camara, G., Souza, R.C.M., Freitas, U.M. & Garrido, J. 1996, 'SPRING: Integrating remote sensing and GIS by object-oriented data modelling', Computers & Graphics, vol. 20, no. 3, p. 395-403, DOI:10.1016/0097-8493(96)00008-8.
Campos, F.H. 2003, 'A Indústria de curtimento de couro em Presidente Prudente: a relação sociedade-natureza em questão', Master Thesis, Universidade Estadual Paulista, São Paulo, viewed 21 May 2022, <http://hdl.handle.net/11449/92846>.
Canato, H.M., Conceição, F.T., Hamada, J., Moruzzi, R. & Navarro, G.R.B. 2014, 'Caracterização hidrogeoquímica do aquífero adamantina na área urbana de Bauru, SP', Science & Engineering Journal, vol. 23, no. 2, pp. 39-47, DOI:10.14393/19834071.2014.24758.
Carvalho, L.L.S., Lacerda, C.F., Carvalho, C.M., Lopes, F.B., Andrade, E.M. & Gomes Filho, R.R. 2020, 'Spatio-temporal variability of groundwater quality in na irrigated área in the brazilian semiarid region', Research, Society and Development, vol. 9, no. 8, e644985786, DOI:10.33448/rsd-v9i8.5786.
CETESB ‒ Companhia Ambiental do Estado de São Paulo 2013, Qualidade das águas subterrâneas no Estado de São Paulo 2010-2012, viewed 21 May 2022, <https://cetesb.sp.gov.br/aguas-subterraneas/publicacoes-e-relatorios/>.
CETESB ‒ Companhia Ambiental do Estado de São Paulo 2016, Qualidade das águas subterrâneas no Estado de São Paulo 2013-2015, viewed 13 May 2022, <https://cetesb.sp.gov.br/aguas-subterraneas/publicacoes-e-relatorios/>.
CETESB ‒ Companhia Ambiental do Estado de São Paulo 2017, Ficha de Informações toxicológicas [Bário], Cetesb, São Paulo, viewd 13 Nov 2021, <https://cetesb.sp.gov.br/laboratorios/wp-content/uploads/sites/24/2022/02/Bario.pdf>.
CETESB ‒ Companhia Ambiental do Estado de São Paulo 2019, Qualidade das águas subterrâneas no Estado de São Paulo 2016-2018, Cetesb, São Paulo, viewed 21 May 2022, <https://cetesb.sp.gov.br/aguas-subterraneas/publicacoes-e-relatorios/>.
Chiarelli, R., Martino, C., Roccheri, M.C. & Cancemi, P. 2021, 'Toxic effects induced by vanadium on sea urchin embryos', Chemosphere, vol. 274, 129843, DOI:10.1016/j.chemosphere.2021.129843.
Coraça, A.L.S. & Helene, L.P.I. 2021, 'Determinação da vulnerabilidade natural do Aquífero Bauru naBacia Hidrográfica do Rio Itaquerê', Revista Águas Subterrâneas, vol. 35, no. 3, pp. 1-12, DOI:10.14295/ras.v35i3.30113.
Coyte, R.M. & Vengosh, A. 2020, 'Factors controlling the risk of co-occurrence of the redox-sensitive elements of arsenic, chromium, vanadium and uranium in groundwater from the Eastern United States', Environmental Science & Technology, vol. 54, no. 7, pp. 4367-75, DOI:10.1021/acs.est.9b06471.
CPRM ‒ Companhia de Pesquisa de Recursos Minerais 2021, SIAGAS - Sistema de Informações de Águas Subterrâneas (SIAGASWEB), viewed 21 May 2022, <https://tinyurl.com/uchk32vy>.
Cressie, N.A.C. 1991, Statistics for spatial data, John Wiley & Sons, New York.
Dhal, B., Thatoi, H.N., Das, N.N., Pandey, B.D. 2013, 'Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review', Journal of Hazardous Materials, vol. 250-251, pp. 272-91, DOI:10.1016/j.jhazmat.2013.01.048.
Drias, T., Khedidja, A., Belloula, M., Badraddine, S. & Saibi, H. 2020, 'Groundwater modelling of the Tebessa-Morsott alluvial aquifer (northeastern Algeria): a geostatistical approach', Groundwater for Sustainable Development, vol. 11, 100444, DOI:10.1016/j.gsd.2020.100444.
Dunning, G., Walstrom, R.E. & Lechner, W. 2018, 'Barium silicate mineralogy of the western margin, North American Continent, Part 1: geology, origin, paragenesis and mineral distribution from Baja California Norte, Mexico, Western Canada and Alaska, USA', Baymin Journal, vol. 19, no. 5, pp. 1-70, viewed 21 May 2022, <https://tinyurl.com/4umww34v>.
Ehrlich, V.A., Nersesyan, A.K., Hoelzl, C., Ferk, F., Bichler, J., Valic, E., Schaffer, A., Schulte-Hermann, R., Fenech, M., Karl-Heinz, W. & Knasmüller, S. 2008, 'Inhalative exposure to vanadium pentoxide causes DNA damage in workers: results of a multiple end point study', Environmental Health Perspectives, vol. 116, no. 12, pp. 1689-93, DOI:10.1289/ehp.11438.
ESRI ‒ Environmental Systems Research Institute 2013, ArcGIS for Desktop – ArcMap, Version 10.3, viewed 21 May 2022, <https://www.esri.com/pt-br/arcgis/products/index>.
Fatola, O.I., Olaolorun, F.A., Olopade, F.E. & Olopade, J.O. 2018, 'Trends in vanadium neurotoxicity', Brain Research Bulletin, vol. 145, pp. 75-80, DOI:10.1016/j.brainresbull.2018.03.010.
Garpelli, L.N. & Gastmans, D. 2020, 'Potencial hidromineral dos aquíferos do estado de São Paulo', Pesquisas em Geociências, vol. 47, no. 3, e100458, DOI:10.22456/1807-9806.109987.
Hirata, R.C.A., Suhogusoff, A., Marcellini, S.S., Villar, P.C. & Marcellini, L. 2019, As águas subterrâneas e sua importância ambiental e socioeconômica para o Brasil, Instituto de Geociências, Universidade de São Paulo, São Paulo, DOI:10.11606/9788563124074.
Hu, J., Peng, Y., Zheng, T., Zhang, B., Liu, W., Wu, C., Jiang, M., Braun, J.M., Liu, S., Buka, S.L., Zhou, A., Wise, J.P., Zhang, Y., Jiang, Y., Hu, C., Chen, X., Huang, Z., Zheng, D., Shi, K., Zhang, X., Truong, A., Qian, Z., Xia, W., Li, Y. & Xu, S. 2018, 'Effects of trimester-specific exposure to vanadium on ultrasound measures of fetal growth and birth size: a longitudinal prospective prenatal cohort study', The Lancet Planetary Health, vol. 2, no. 1, pp. 427-37, DOI:10.1016/S2542-5196(18)30210-9.
Iritani, M.A. & Ezaki, S. 2012, As águas subterrâneas do Estado de São Paulo, Secretaria de Estado do Meio Ambiente – SMA, Instituto Geológico, São Paulo, viewed 21 May 2022, <http://twixar.me/FyRm>.
Isaaks, E.H. & Srivastava, R.M. 1989, Applied geostatistics, Oxford University Press, Nova York.
Joodavi, A., Aghlmand, R., Podgorski, J., Dehbandi, R. & Abbasi, A. 2021, 'Characterization, geostatistical modeling and health risk assessment of potentially toxic elements in groundwater resources of northeastern Iran', Journal of Hydrology: Regional Studies, vol. 37, 100885, DOI:10.1016/j.ejrh.2021.100885.
Kiang, C.H., Stradioto, M.R. & Silva, F.P. 2016, 'Tipos hidroquímicos do Sistema aquífero Bauru no Estado de São Paulo', Águas Subterrâneas, vol. 30, no. 2, pp. 224-45, DOI:10.14295/ras.v30i2.28005.
Lee, J.-C., Kim, E., Chung, K.-W., Kim, R. & Jeon, H.-S. 2021, 'A review on the metallurgical recycling of vanadium from slags: towards a sustainable vanadium production', Journal of Materials Research and Technology, vol. 12, pp. 343-64, DOI:10.1016/j.jmrt.2021.02.065.
Lemos, M.M.G., Silva, M.F.B., Dias, C.L., Bucci, E.M. & Casarini, D.P. 2002, 'Qualidade das águas subterrâneas no estado de São Paulo, em poços tubulares utilizados para abastecimento público', XII Congresso Brasileiro de Águas Subterrâneas, viewed 21 May 2022, <https://tinyurl.com/3b69npm6>.
Li, H., Zhou, D., Zhang, Q., Feng, C., Zheng, W., He, K. & Lan, Y. 2013, 'Vanadium exposure-induced neurobehavioral alterations among Chinese workers', NeuroToxicology, vol. 36, pp. 49-54, DOI:10.1016/j.neuro.2013.02.008.
Lima, C.G.R., Lollo, J.A., Bacani, V.M. & Costa, N.R. 2020, 'Variabilidade espaçotemporal das águas subterrâneas do aquífero Bauru impróprias para o consumo humano: concentrações de Bário, Crômio Total e Vanádio', Pesquisas em Geociências, vol. 47, no. 2, e096380, DOI:10.22456/1807-9806.108582.
Liu, J., Gao, Z., Zhang, Y., Sun, Z., Sun, T., Fan, H., Wu, B., Li, M. & Qian, L. 2021, 'Hydrochemical evaluation of groundwater quality and human health risk assessment of nitrate in the largest peninsula of China based on high-density sampling: a case study of Weifang', Journal of Cleaner Production, vol. 322, 129164, DOI:10.1016/j.jclepro.2021.129164.
Lourencetti, J., Felizardo, L.M., Faria, G.M., Prates, M.M. & Oliveira, J.N. 2020, 'Uma Comparison of overexploitation of Bauru Aquifer in the years 2002 and 2012', Research, Society and Development, vol. 9, no. 10, e8479109176, DOI:10.33448/rsd-v9i10.9176.
Lundgren, W.J.C., Silva, J.A.A. & Ferreira, R.L.C. 2017, 'A precisão da estimativa do erro da krigagem pela validação cruzada', Floresta e Ambiente, vol. 24, e00124114, DOI:10.1590/2179-8087.124114.
Manzione, R.L. & Castrignaro, A. 2019, 'A geostatistical approach for multi-source data fusion to predict water table depth', Science of The Total Environment, vol. 696, 133763, DOI:10.1016/j.scitotenv.2019.133763.
Manzione, R.L., Silva, C.O.F. & Castrignaro, A. 2020, 'A combined geostatistical approach of data fusion and stochastic simulation for probabilistic assessment of shallow water table depth risk', Science of The Total Environment, vol. 765, 142743, DOI:10.1016/j.scitotenv.2020.142743.
Marques, C.H.G., Terada, R., Galvão, P. & Hirata, R. 2019, 'Evolução espacial e temporal da contaminação por nitrato no aquífero urbano de Urânia (SP)', Águas Subterrâneas, vol. 33, no. 3, pp. 258-69, DOI:10.14295/ras.v33i3.29524.
Mataveli, L.R.V., Buzzo, M.L., Carvalho, M.F.H., Arauz, L.J. & Mataveli, G.A.V. 2018, 'Avaliação dos níveis de cromo total em águas para consumo humano', Revista do Instituto Adolfo Lutz, vol. 77, e1748, DOI:10.53393/rial.2018.v77.34184.
Moles, N.R. 2015, 'Barium carbonates as relict of chemical sediments diagenesis in the Alberfedy stratiforme barite deposits, Grampian Highlands, Scotland', 13th Biennial SGA Meeting, Nancy, France, viewed 9 May 2022, <https://tinyurl.com/2p9af4t9>.
Montanheiro, F. & Chang, H.K. 2016, 'Nitrato no Aquífero Adamantina: o caso do município de Monte Azul Paulista, SP', Revista do Instituto Geológico, vol. 37, no. 2, pp. 25-44, DOI:10.5935/0100-929X.20160007.
Nunes, M.A., Aravena, R. & Parker, B.L. 2021, 'Geochemical and isotopic evidence for pumping-induced impacts to bedrock groundwater quality in the City of Guelph, Canada', Science of The Total Environment, vol. 800, 149359, DOI:10.1016/j.scitotenv.2021.149359.
Oliveira, F.L.V., Kuno, R, Nascimento, F.P. & Gouveira, N. 2021, 'Exposição potencial a baixas doses de cromo por via oral e mortalidade por câncer de estômago na população do interior do Estado de São Paulo, Brasil', Cadernos de Saúde Pública, vol. 37, no. 4, e00020020, DOI:10.1590/0102-311X00020020.
Osiakwan, G.M, Appiah-Adjei, E.K., Kabo-Bah, A.T., Gibrilla, A. & Anornu, G. 2021, 'Assessment of groundwater quality and the controlling factors in coastal aquifers of Ghana: an integrated statistical, geostatistical and hydrogeochemical approach', Journal of African Earth Sciences, vol. 184, 104371, DOI:10.1016/j.jafrearsci.2021.104371.
Pacheco, J.W.F. 2010, 'Gestão de água na indústria de curtumes do estado de São Paulo – Um diagnóstico sob os princípios da produção mais limpa', Master Thesis, Centro Estadual de Educação Tecnológica Paula Souza, São Paulo, viewed 21 May 2022, <https://tinyurl.com/3fuatfub>.
Pi, X., Jin, L., Li, Z., Zhang, Y., Wang, L. & Ren, A. 2019, 'Association between concentrations of barium and aluminum in placental tissues and risk for orofacial clefts', Science of The Total Environment, vol. 652, pp. 406-12, DOI:10.1016/j.scitotenv.2018.10.262.
Pimentel-Gomes, F. & Garcia, C.H. 2001, 'Estatística aplicada a experimentos agronômicos e florestais', Revista Agricultura, vol. 76, no. 3, 476, DOI:10.37856/bja.v76i3.1314.
Poddalgoda, D., Macey, K., Assad, H. & Krishnan, K. 2017, 'Development of biomonitoring equivalents for barium in urine and plasma for interpreting human biomonitoring data', Regulatory Toxicology and Pharmacology, vol. 86, pp. 303-11, DOI:10.1016/j.yrtph.2017.03.022.
Qureshi, S.S., Channa, A., Memon, S.A., Khan, Q., Jamali, G. A., Panhwar, A. & Saleh, T.A. 2021, 'Assessment of physicochemical characteristics in groundwater quality parameters', Environmental Technology & Innovation, vol. 24, 101877, DOI:10.1016/j.eti.2021.101877.
Ransom, K.M., Nolan, B.T., Stackelberg, P.E., Belitz, K. & Fram, M.S. 2022, 'Machine learning predictions of nitrate in groundwater used for drinking supply in the conterminous United States', Science of The Total Environment, vol. 807, no. 3, 151065, DOI:10.1016/j.scitotenv.2021.151065.
Rashid, A., Ayub, M., Javed, A., Khan, S., Gao, X., Li, C., Ullah, Z., Sardar, T., Muhammad, J. & Nazneen, S. 2021, 'Potentially harmful metals, and health risk evaluation in groundwater of Mardan, Pakistan: application of geostatistical approach and geographic information system', Geoscience Frontiers, vol. 12, no. 3, 101128, DOI:10.1016/j.gsf.2020.12.009.
Rddad, L. & Bouhlel, S. 2016, 'The Bou Dahar Jurassic carbonate-hosted Pb-Zn-Ba deposits (Oriental High Atlas, Morocco): fluid-inclusion and C-O-S-Pb isotopes studies', Ore Geology Reviews, vol. 72, no. 1, pp. 1072-87, DOI:10.1016/j.oregeorev.2015.08.011.
Rios, A.P., Tavares, T., Correa, N., Ferreira, A.L., Cavani, A.C.M., Martins, V., Crespi, A., Bertolo, R., Carvalho, A.M., Albuquerque Filho, J.L. & Cândido, S. 2017, 'Caracterização hidroquímica do sistema aquífero Bauru no espigão de Marília (SP)', XIX Congresso Brasileiro de Águas Subterrâneas, viewed 21 May 2022, <https://doi.org/10.14295/ras.v0i0.28725>.
Robertson, G.P. 2004, GS+: Geoestatistics for the environmental sciences (GS+ User´s Guide), Gamma Desing Software, Plainwell, Michigan.
Romagnoli, I. & Manzione, R.L. 2018, 'Mapeamento da vulnerabilidade das águas subterrâneas e riscos de contaminação na região do Pontal do Paranapanema (UGRHI - 22)', Brazilian Journal of Biosystems Engineering, vol. 12, no. 3, pp. 307-26, DOI:10.18011/bioeng2018v12n3p307-326.
Rosenberger, M., Varnier, C., Iritani, M.A., Ferreira, L.M.R., Oda, G.H. & Viotti, M. 2013, 'Vulnerabilidade natural à contaminação do Sistema Aquífero Bauru na área urbana do município de Bauru (SP)', Revista do Instituto Geológico, vol. 34, no. 3, pp. 51-67, DOI:10.5935/0100-929X.20130009.
São Paulo 2005, DAEE ‒ Departamento de Águas e Energia Elétrica; IG ‒ Instituto Geológico; IPT ‒ Instituto de Pesquisas Tecnológicas do Estado de São Paulo; CPRM ‒ Serviço Geológico do Brasil, Mapa de águas subterrâneas do Estado de São Paulo escala 1:1.000.000, viewed 21 May 2022, <https://tinyurl.com/hx4vr9es>.
São Paulo 2011, DAEE ‒ Departamento de Águas e Energia Elétrica; IG ‒ Instituto Geológico, Projeto São José do Rio Preto: restrição e controle de uso de água subterrânea, viewed 21 May 2022, <https://tinyurl.com/ye4y2arn>.
São Paulo 2022, DAEE - Departamento de Águas e Energia Elétrica, Banco de Dados Hidrológico, viewed 21 May 2022, <http://www.hidrologia.daee.sp.gov.br>.
Scibior, A., Wnuk, E. & Golebiowska, D. 2021, 'Wild animals in studies on vanadium bioaccumulation - Potential animal models of environmental vanadium contamination: A comprehensive overview with a Polish accent', Science of The Total Environment, vol. 785, 147205, DOI:10.1016/j.scitotenv.2021.147205.
Siste, N.A. & Souza, A.T.A. 2013, 'A qualidade da água das minas utilizadas para fins de potabilidade em pontos de afloramento do aquífero Bauru no entorno de Presidente Prudente/SP', Colloquium Exactarum, vol. 5, no. esp, pp. 141-8, DOI:10.5747/ce.2013.v05.nesp.000064.
Solgi, E. & Jalili, M. 2021, 'Zoning and human health risk assessment of arsenic and nitrate contamination in groundwater of agricultural areas of the twenty two village with geostatistics (Case study: Chahardoli Plain of Qorveh, Kurdistan Province, Iran)', Agricultural Water Management, vol. 255, 107023, DOI:10.1016/j.agwat.2021.107023.
Souza, W.V.F., Teixeira, M.C., Cruz, T.S., Silva, F.P., Silva, K.V.C. & Costa, G.K.V. 2019, 'Impactos socioambientais: uma leitura a partir dos processos de urbanização e da indústria coureria em Presidente Prudente (SP)', Revista Geografia em Atos, vol. 7, no. 14, pp. 163-80, DOI:10.35416/geoatos.v7i14.666.
Stradioto, M.R., Teramoto, E.H. & Chang, H.K. 2019, 'Nitrato em águas subterrâneas do Estado de São Paulo', Revista do Instituto Geológico, vol. 40, no. 3, pp. 1-12, DOI:10.33958/revig.v40i3.672.
Tavares, T., Bertolo, R., Fiúme, B., Crespi, A., Martins, V. & Hirata, R. 2015, 'Hydrochemical investigation of barium in the public water supply wells of Sao Paulo state, southern Brazil', Environmental Earth Sciences, vol. 74, no. 9, pp. 6599-612, DOI:10.1007/s12665-015-4661-7.
Uddin, M.G., Moniruzzaman, M., Quader, M.A. & Hasan, M.A. 2018, 'Spatial variability in the distribution of trace metals in groundwater around the Rooppur nuclear power plant in Ishwardi, Bangladesh', Groundwater for Sustainable Development, vol. 7, pp. 220-31, DOI:10.1016/j.gsd.2018.06.002.
Vicente, G.Z., Lima, C.G.R. & Marques, S.M. 2018, 'Variabilidade espacial e temporal do Nitrato e Cloreto no Sistema Aquífero Bauru, estado de São Paulo', Águas Subterrâneas, vol. 32, no. 3, pp. 295-306, DOI:10.14295/ras.v32i3.29099.
Villar, P.C. 2016, 'Groundwater and the right to water in a contexto of crisis', Ambiente & Sociedade, vol. 14, no. 1, pp. 83-102, DOI:10.1590/1809-4422ASOC150126R1V1912016.
Vinson, D.S., Vail Meador, J., Batianis, E., Gazel, E., Polizzoto, M. & Duckworth, O. 2019, 'Naturally occurring groundwater chromium and vanadium in piedmont saprolite and fractured crystalline rocks: relationship between redox-sensitive solutes and trace element speciation', GSA Annual Meeting in Phoenix, Arizona, viewed 21 May 2022, <https://gsa.confex.com/gsa/2019AM/webprogram/Paper337866.html>.
Wagh, V.M., Panaskar, D.B., Mukate, S.V., Gaikwad, S.K., Muley, A.A. & Varade, A.M. 2018, 'Health risk assessment of heavy metal contamination in groundwater of Kadana River Basin, Nashik, India', Modeling Earth Systems and Environment, vol. 4, no. 3, pp. 969-80, DOI:10.1007/s40808-018-0496-z.
Wang, L., Stuart, M.E., Lewis, M.A., Ward, R.S., Skirvin, D., Naden, P.S., Collins, A.L. & Ascott, M.J. 2016, 'The changing trend in nitrate concentrations in major aquifers due to historical nitrate loading from agricultural land across England and Wales from 1925 to 2150', Science of The Total Environment, vol. 542, no. A, pp. 694-705, DOI:10.1016/j.scitotenv.2015.10.127.
WHO ‒ World Health Organization 2000, Air quality guidelines – Vanadium, 2nd edn, WHO, Copenhagen.
WHO ‒ World Health Organization 2011, Guidelines for drinking-water quality, 4th edn, WHO, Genebra.
Wright, M.T. & Belitz, K. 2010, 'Factors controlling the regional distribution of vanadium in groundwater', Ground Water, vol. 48, no. 4., pp. 515-25, DOI:10.1111/j.1745-6584.2009.00666.x.
Yamamoto, J.K. & Landim, P.M.B. 2013, Geoestatística: conceitos e aplicações, Editora Oficina de Letras, São Paulo.
Yan, T., Wang, X., Liu, D., Chi, Q., Zhou, J., Xu, S., Zhang, B., Nie, L. & Wang, L. 2021, 'Continental-scale spatial distribution of chromium (Cr) in China and its relationship with ultramafic-mafic rocks and ophiolitic chromite deposit', Applied Geochemistry, vol. 126, 104896, DOI:10.1016/j.apgeochem.2021.104896.
Zhao, B., Sun, Z. & Liu, Y. 2022, 'An overview of in-situ remediation for nitrate in groundwater', Science of The Total Environment, vol. 804, 149981, DOI:10.1016/j.scitotenv.2021.149981.
Zwolak, I. 2020, 'Protective effects of dietary antioxidants against vanadium-induced toxicity: a review', Oxidative Medicine and Cellular Longevity, vol. 2020, 1490316, DOI:10.1155/2020/1490316.
Downloads
Additional Files
Published
Issue
Section
License
This journal is licensed under a Creative Commons — Attribution 4.0 International — CC BY 4.0, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.