Employment of Free Packages for MT-InSAR Approaches to Verify the Subsidence Event over Maceió City, Brazil

Authors

DOI:

https://doi.org/10.11137/1982-3908_2023_46_56709

Keywords:

PSInSAR, Interferometry, SNAP-StaMPS

Abstract

Persistent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR) technique employs a Multi-Temporal InSAR (MT-InSAR) approach to accurately measure subsidence. This technique, a type of Differential Interferometry (DInSAR), mitigates errors that traditional DInSAR techniques cannot, including temporal and geometric decorrelation, and phase unwrapping errors. In order to verify the subsidence process in the Pinheiro neighborhood of Maceio - Brazil following a 2018 earthquake, we tested free processing packages such as SNAP-StaMPS integration. Our investigation was conducted in two stages: first, using a stack of Sentinel-1A SLCSAR (Single Look Complex-SAR) images acquired before and after the earthquake, and second, using more recent images to determine if the subsidence process is ongoing. Results from the first stage identified the area affected by subsidence and the second stage confirmed the continued presence of subsidence events. From 2017 to 2018, the subsidence process exhibited the highest displacement amplitude of -32.3 mm/year, whereas, between 2021 and 2022, the amplitude decreased to -24.09 mm/year, indicating a deceleration in the subsidence process.

Author Biography

Sérgio da Conceição Alves, Federal University of Paraná, Brazil

Doctorate on the Graduate Program in Geodetic Sciences at the Federal University of Paraná (PPGCG/UFPR)

References

Acosta, G., Rodríguez, A., Euillades, P., Euillades, L., Ruiz, F., Rosell, P., Sanchez, M., Leiva, F., Ariza, J. & García, H. 2021, 'Detection of active landslides by dinsar in Andean Precordillera of San Juan, Argentina', Journal of South American Earth Sciences, vol. 108, e103205, DOI:10.1016/j.jsames.2021.103205.

Agram, P.S., Jolivet, R., Riel, B., Lin, Y.N., Simons, M., Hetland, E., Doin, M.P. & Lasserre, C. 2013, 'New radar interferometric time series analysis toolbox released', Eos, vol. 94, no. 7, pp. 69–70, DOI:10.1002/2013EO070001.

Bekaert, D.P.S., Hooper, A. & Wright, T.J. 2015, 'A spatially variable power law tropospheric correction technique for InSAR data', Journal of Geophysical Research: Solid Earth, vol. 120, no. 2, pp. 1345–56, DOI:10.1002/2014JB011558.

Blanco-Sánchez, P., Mallorquí, J.J., Duque, S. & Monells, D. 2008, 'The coherent pixels technique (CPT): An advanced DInSAR technique for nonlinear deformation monitoring', Pure and Applied Geophysics, vol. 165, no. 6, pp. 1167–93, DOI:10.1007/s00024-008-0352-6.

Carlà, T., Farina, P., Intrieri, E., Ketizmen, H. & Casagli, N. 2018, 'Integration of ground-based radar and satellite InSAR data for the analysis of an unexpected slope failure in an open-pit mine', Engineering Geology, vol. 235, pp. 39–52, DOI:10.1016/j.enggeo.2018.01.021.

Chang, C.Y., Jin, M.Y. & Curlander, J.C. 1992, 'SAR processing based on the exact two-dimensional transfer function', 92 International Geoscience and Remote Sensing Symposium (IGARSS), Houston, pp. 355–9.

Chen, C.W. & Zebker, H.A. 2000, 'Network approaches to two-dimensional phase unwrapping: intractability and two new algorithms: erratum', Journal of the Optical Society of America A, vol. 18, no. 5, 1192, DOI:10.1364/JOSAA.18.001192.

Chen, C.W. & Zebker, H.A. 2001, 'Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization', Journal of the Optical Society of America A, vol. 18, no. 2, pp. 338-51, DOI:10.1364/josaa.18.000338.

Chen, C.W. & Zebker, H.A. 2002, 'Phase unwrapping for large SAR interferograms: Statistical segmentation and generalized network models', IEEE Transactions on Geoscience and Remote Sensing, vol. 40, no. 8, pp. 1709–19, DOI:10.1109/TGRS.2002.802453.

CPRM 2018, ‘Mapeamento das Rachaduras e do Afundamento’, Galeria de Imagens - Bairro Pinheiro, viewed 29 December 2022, <http://www.cprm.gov.br/publique/Gestao-Territorial/Acoes-Especiais/Galeria-de-Imagens---Bairro-Pinheiro-5347.html>.

CPRM 2019, Estudos sobre a instabilidade do terreno nos bairros Pinheiro, Mutange e Bebedouro, Maceió (AL), CPRM, vol. III, pp. 1–50.

CPRM 2020, Informativo Técnico n° 01/2020, Serviço Geológico do Brasil, Maceió.

Crosetto, M. & Crippa, B. 2005, 'State of the art of land deformation monitoring using differential SAR interferometry', ISPRS Workshop, Germany.

Crosetto, M., Monserrat, O., Cuevas-González, M., Devanthéry, N. & Crippa, B. 2016, 'Persistent Scatterer Interferometry: A review', ISPRS Journal of Photogrammetry and Remote Sensing, vol. 115, pp. 78–89, DOI:10.1016/j.isprsjprs.2015.10.011.

Du, Z. 2017, 'Mapping Earth Surface Deformation using New Time Series Satellite Radar Interferometry', PhD Thesis, University of New South Wales, Sydney.

ESA 2012, Sentinel-1 ESA’s radar observatory mission for GMES operational services, ESA Special Publication, viewed 1 December 2022, <https://sentinel.esa.int/documents/247904/349449/s1_sp-1322_1.pdf>.

ESA 2022a, 'POD Instruments and Products', Copernicus POD, viewed 6 January 2023, <https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-1-sar/pod>.

ESA 2022b, 'The Sentinel-1 Toolbox', European Space Agency, viewed 21 December 2022, <https://sentinel.esa.int/web/sentinel/toolboxes/sentinel-1>.

Euillades, P.A., Euillades, L.E., Rosell, P. & Roa, Y. 2020, 'Subsidence in Maceio, Brazil, Characterized by Dinsar and Inverse Modeling', 2020 IEEE Latin American GRSS and ISPRS Remote Sensing Conference, LAGIRS - Proceedings, Chile, pp. 313–7.

Ferretti, A., Prati, C. & Rocca, F. 2000, 'Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry', IEEE Transactions on Geoscience and Remote Sensing, vol. 38, no. 5 I, pp. 2202–12, DOI:10.1109/36.868878.

Ferretti, A., Prati, C. & Rocca, F. 2001, 'Permanent scatterers in SAR interferometry', IEEE Transactions on Geoscience and Remote Sensing, vol. 39, no. 1, pp. 8–20, DOI:10.1109/36.898661.

Ferro-Famil, L. & Pottier, E. 2016, 'Synthetic Aperture Radar Imaging', Microwave Remote Sensing of Land Surfaces: Techniques and Methods, pp. 1–65, DOI:10.1016/B978-1-78548-159-8.50001-3.

Flores-Anderson, A.I., Herndon, K.E., Thapa, R.B. & Cherrington, E. 2019, The SAR Handbook, NASA.

Foumelis, M., Blasco, J.M.D., Desnos, Y.L., Engdahl, M., Fernández, D., Veci, L., Lu, J. & Wong, C. 2018, 'ESA SNAP - Stamps integrated processing for Sentinel-1 persistent scatterer interferometry', International Geoscience and Remote Sensing Symposium (IGARSS), vol. 2018, no. 1, pp. 1364–7, DOI:10.1109/IGARSS.2018.8519545.

Gabriel, A.K., Goldstein, R.M. & Zebker, H.A. 1989, 'Mapping small elevation changes over large areas: differential radar interferometry', Journal of Geophysical Research, vol. 94, no. B7, pp. 9183–91, DOI:10.1029/JB094iB07p09183.

Geomatica 2015, Geomatica Training Guide: SAR Processening with Geomatica, PCI Geomatics, Canada, viewed 25 November 2022, <https://www.researchgate.net/profile/Mohamed_Mourad_Lafifi/post/How_to_generate_a_Coherency_matrix_in_SAR_Polarimetry/attachment/59d648ac79197b80779a353e/AS%3A467837115473921%401488552469027/download/TrainingGuide-SAR-processing-with-Geomatica.pdf>.

Grassi, F. & Mancini, F. 2019, 'Sentinel-1 data for ground deformation monitoring: the SNAP-StaMPS workflow', Dief, no. 2019, pp. 20–5.

Hanssen, R.F. 2001, Radar Interferometry: Data Interpretation and Error Analysis, 1st edn, vol. 2, Springer Netherlands, Dordrecht.

Hexagon 2019, 'Imagine SAR Interferometry', Hexagon, viewed 21 October 2019, <https://hexagon.com/products/imagine-sar-interferometry>.

Hoeser, T. 2020, 'thho/StaMPS_Visualizer: Baseline Plot (v3.0-beta) - Zenodo', Zenodo, viewed 25 November 2022, <https://zenodo.org/record/4407188>.

Hooper, A.J. 2008, 'A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches', Geophysical Research Letters, vol. 35, no. 16, pp. 1–5, DOI:10.1029/2008GL034654.

Hooper, A. & Zebker, H.A. 2007, 'Phase unwrapping in three dimensions with application to InSAR time series', Journal of the Optical Society of America A, vol. 24, no. 9, p. 2737-47, DOI:10.1364/josaa.24.002737.

Hooper, A., Segall, P. & Zebker, H. 2007, 'Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos', Journal of Geophysical Research: Solid Earth, vol. 112, no. 7, pp. 1–21, DOI:10.1029/2006JB004763.

Hooper, A., Zebker, H., Segall, P. & Kampes, B. 2004, 'A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers', Geophysical Research Letters, vol. 31, no. 23, pp. 1–5, DOI:10.1029/2004GL021737.

IBGE 2021, 'Cidades e Estados - Maceió', Instituto Brasileiro de Geografia e Estatística, viewed 21 December 2022, <https://www.ibge.gov.br/cidades-e-estados/al/maceio.html>.

Jawak, S.D., Bidawe, T.G. & Luis, A.J. 2015, 'A Review on Applications of Imaging Synthetic Aperture Radar with a Special Focus on Cryospheric Studies', Advances in Remote Sensing, vol. 04, no. 02, pp. 163–75, DOI:10.4236/ars.2015.42014.

Kirscht, M. & Rinke, C. 1998, '3D Reconstruction of Buildings and Vegetation from Synthetic Aperture Radar (SAR) Images', IAPR Workshop on Machine Vision Application.

L3Harries 2021, ENVI ® SARSCAPE ® Process, analyze and solve problems with SAR data, viewed 22 January 2023, <https://www.l3harrisgeospatial.com/Portals/0/pdfs/L3HG_21_SARscape_sell_sheet_Web.pdf>.

Lame, D.B., Born, G.H., Dunne, J.A., Spear, A.J. & Yamarone, C.A. 1980, 'Seasat Performance Evaluation: The First Two Steps', IEEE Journal of Oceanic Engineering, vol. 5, no. 2, pp. 72–3, DOI:10.1109/JOE.1980.1145454.

Li, Z. & Bethel, J. 2008, 'Image coregistration in SAR interferometry', International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, vol. 37, pp. 433–8.

Maceió 2000, LEI-4952-2000-MACEIO-AL, Prefeitura Municipal de Maceió, Maceió, viewed 23 January 2023, <https://leismunicipais.com.br/AL/MACEIO/LEI-4952-2000-MACEIO-AL.pdf>.

Massonnet, D. & Feigl, K.L. 1998, 'Radar interferometry and its application to changes in the earth’s surface', Reviews of Geophysics, vol. 36, no. 4, pp. 441–500, DOI:10.1029/97RG03139.

Mora, B. 2019, 'Sentinel Application Platform (SNAP) - Help', European Space Agency, viewed 22 January 2023, <https://gofcgold.org/sites/default/files/2019-04/ESA_SNAP-Toolbox_BriceMora.pdf>.

Perissin, D., Wang, Z. & Wang, T. 2011, 'The SARPROZ InSAR tool for urban subsidence/manmade structure stability monitoring in China', 34th International Symposium on Remote Sensing of Environment - The GEOSS Era: Towards Operational Environmental Monitoring.

Rosen, P.A., Hensley, S., Joughin, I.R., Li, F.K., Madsen, S.N., Rodriguez, E. & Goldstein, R.M. 2000, 'Synthetic aperture radar interferometry', Proceedings of the IEEE, vol. 88, no. 3, pp. 333–82, DOI:10.1109/5.838084.

Rosen, P.A., Gurrola, E., Sacco, G.F. & Zebker, H. 2012, 'The InSAR scientific computing environment', Proceedings of the 9th European Conference on Synthetic Aperture Radar, Germany, pp. 730–3.

Sandwell, D., Mellors, R., Tong, X., Wei, M. & Wessel, P. 2011, 'GMTSAR: An InSAR Processing System Based on Generic Mapping Tools David', Library – Scripps Digital Collection, pp. 96.

Sheng, Y., Wang, Y., Ge, L. & Rizos, C. 2012, 'Differential Radar Interferometry and Its Application in Monitoring Underground Coal Mining-Induced Subsidence', Science, no. 1989, pp. 227–32.

Singh Virk, A., Singh, A. & Mittal, S.K. 2018, 'Advanced MT-InSAR Landslide Monitoring: Methods and Trends', Journal of Remote Sensing & GIS, vol. 07, no. 01, 1000225, DOI:10.4172/2469-4134.1000225.

Sowter, A., Bin Che Amat, M., Cigna, F., Marsh, S., Athab, A. & Alshammari, L. 2016, 'Mexico City land subsidence in 2014–2015 with Sentinel-1 IW TOPS: Results using the Intermittent SBAS (ISBAS) technique', International Journal of Applied Earth Observation and Geoinformation, vol. 52, pp. 230–42, DOI:10.1016/j.jag.2016.06.015.

Varnes, D.J. 1978, 'Slope Movement Types and Processes', in R.L. Schuster & R.J. Krizek (eds), Landslides: Analysis and Control, 176th edn, National Academy of Sciences, Washington, pp. 11–3.

Vassileva, M., Al-Halbouni, D., Motagh, M., Walter, T.R., Dahm, T. & Wetzel, H.U. 2021, 'A decade-long silent ground subsidence hazard culminating in a metropolitan disaster in Maceió, Brazil', Scientific Reports, vol. 11, no. 1, e7704, DOI:10.1038/s41598-021-87033-0.

Werner, C., Wegmüller, U., Strozzi, T. & Wiesmann, A. 2003, 'Interferometric Point Target Analysis for Deformation Mappin', International Geoscience and Remote Sensing Symposium (IGARSS), vol. 7, no. 1, pp. 4362–4, DOI:10.1109/IGARSS.2003.1295516.

Wu, C., Liu, K.Y. & Jin, M. 1982, 'Modeling and a Correlation Algorithm for Spaceborne SAR Signals', IEEE Transactions on Aerospace and Electronic Systems, vol. 18, no. 5, pp. 563–75.

Yunjun, Z., Fattahi, H. & Amelung, F. 2019, 'Small baseline InSAR time series analysis: Unwrapping error correction and noise reduction', Computers and Geosciences, vol. 133, 104331, DOI:10.1016/j.cageo.2019.104331.

Zhang, B., Chen, Yan, Chen, Yunping & Bu, X. 2022, 'Deformation Extraction Method of Transmission Tower Foundation using PS-InSAR', IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, Malaysia, pp. 2935–8.

Zhang, Y., Meng, X.M., Dijkstra, T.A., Jordan, C.J., Chen, G., Zeng, R.Q. & Novellino, A. 2020, 'Forecasting the magnitude of potential landslides based on InSAR techniques', Remote Sensing of Environment, vol. 241, 111738, DOI:10.1016/j.rse.2020.111738.

Downloads

Additional Files

Published

2023-08-16

Issue

Section

Environmental Sciences