The Western South Atlantic Sea Surface Temperature and Brazil Current Volume Transport at 30°S: a Study Based on the Brazilian Earth System Model 2.5 Historical Simulations
DOI:
https://doi.org/10.11137/1982-3908_2025_48_58990Keywords:
BESM-OA2.5, Coupled modeling, Oceanographic analysisAbstract
The analyses of sea surface temperature (SST) in the western portion of the South Atlantic and the integrated volume transport of the Brazil Current (BCVT) at 30°S were conducted using historical results (Jan/1993-Nov/2005) from the Brazilian Earth System Model version 2.5 (BESM-OA2.5) and comparing them with those from the 2M version of the Geophysical Fluid Dynamics Laboratory Earth System Model (GFDL-ESM2M) and the Global Ocean Physics Reanalysis 12V1 (GLORYS12V1). The GHRSST Level 4 AVHRR_OI Global Blended Sea Surface Temperature Analysis (GHRSSTL4) product was used to validate these results. A tendency of overestimation of SST values by the Brazilian model was observed by approximately 1.07°C compared to GHRSSTL4. The BCVT results at 30°S indicated an average value of 10.54±4.68, 6.79±1.40, and 11.99±4.16 Sv for BESM-OA2.5, GFDL-ESM2M, and GLORYS12V1, respectively. For the Brazil-Malvinas Confluence region, the authors found a mean Bias of 3.76 °C with a maximum of 10.38 °C according to BESM-OA2.5 results in relation to GHRSSTL4. Compared to other studies, the BCVT values obtained were lower due to the use of more direct observational data, such as current meters and buoys by other authors. Additionally, the low spatial resolution of the models used may limit the detailed representation of the Brazil Current.
References
Assad, L.P. 2006, ‘Influência do campo de vento anômalo tipo ENSO na dinâmica do Atlântico Sul’, PhD thesis, Universidade Federal do Rio de Janeiro.
Azeredo, V.M. 2017, ‘Impactos do El Niño 1997/1998 sobre a dinâmica da Corrente do Brasil’, Master thesis, Universidade Federal do Rio de Janeiro.
Banzon, V.F. & Reynolds, R.W. 2013, ‘Use of WindSat to Extend a Microwave-Based Daily Optimum Interpolation Sea Surface Temperature Time Series’, Journal of Climate, vol. 26, no. 8, pp. 2557-62.
Benesty, J., Cheng, J., Huang, Y. & Cohen I. 2009, ‘Pearson correlation coefficient’, in Noise reduction in speech processing, Springer, Berlin, pp. 37-40.
Beniston, M., Diaz, H.F. & Bradley, R.S. 1997, ‘Climatic Change at High Elevation Sites: An Overview’, Climatic Change, vol. 36, pp. 233-51.
Broggio, M.F., Garcia, C.A.E. & Silva, R.R. 2021, ‘Evaluation of South Atlantic Thermohaline Properties from BESM-OA2.5 and Three Additional Global Climate Models’, Ocean and Coastal Research, vol. 69.
Carvalho, J.S., Oliveira, F.S. & Campos, E.J. 2018, ‘Impacts of Southern Hemisphere Westerlies on the Brazil Current at 30°S’, Revista Brasileira de Geofísica, vol. 36, no. 3, pp. 255-66.
Cataldi, M., Assad, L.P., Junior, A.R. & Alves, J.L. 2010, ‘Estudo da influência das anomalias da TSM do Atlântico Sul Extratropical na região de Confluência Brasil Malvinas no regime hidrometeorológico de verão do Sul e Sudeste do Brasil’, Revista Brasileira de Meteorologia, vol. 25, no. 4, pp. 513-24.
Chelton, D.B., Schlax, M.G., Witter, D.L. & Richman, J.G. 1990, ‘Geosat altimeter observations of the surface circulation of the Southern Ocean’, Journal of Geophysical Research, vol. 95, no. C10, pp. 17877-903.
CMEMS 2018, Quality Information Document For Global Ocean Reanalysis Products GLOBAL-REANALYSIS-PHY-001-030, viewed 04 February 2020, <https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-GLO-QUID-001-030.pdf>.
Dunne, J.P., Adcroft, A., John, J. & Griffies, S. 2012, ‘GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. Part I: Physical Formulation and Baseline Simulation Characteristics’, Journal of Climate, vol. 25, no. 19, pp. 6646-65.
Evans, D.L. & Signorini, S.S. 1985, ‘Vertical structure of the Brazil Current’, Nature, vol. 315, pp. 48-50.
Flato, G. M., Marotzke. J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W., Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P., Guilyardi, E., Jakob, C., Kattsov, V., Reason, C. & Rammukainen, M. 2013, ‘Evaluation of Climate Models’, in T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex & P.M. Midgley (eds), Climate Change 2013: The Physical Science Basis, Cambridge University Press, Cambridge/NY, pp. 741-866.
Garfield, N. 1990, ‘The Brazil Current at subtropical latitudes’, Master thesis, University of Rhode Island.
Grundmann, R. & Rödder, S. 2019, ‘Sociological Perspectives on Earth System Modeling’, Journal of Advances in Modeling Earth Systems, vol. 11, no. 12, pp. 3878-92.
Guseva, S., Bleninger, T., Jöhnk, K., Polli, B. A., Tan, Z., Thiery, W., Zhuang, Q., Rusak, J. A., Yao, H., Lorke, A. & Stepanenko, V. 2020, ‘Multimodel simulation of vertical gas transfer in a temperate lake’, Hydrology and Earth System Sciences, vol. 24, no. 2, pp. 697-715.
Hanke, J. E. & Reitsch, A. G. 1995, Business forecasting, 5th edn, NJ7 Prentice-Hall, Englewood Cliffs.
Hurrell, J.W., Holland, M.M., Gent, P.R. & Ghan, S. 2013, ‘The Community Earth System Model: A framework for collaborative research’, Bulletin of the American Meteorological Society, vol. 94, no. 9, pp. 1339-60.
INPE 2015, Modelo BESM, Brazil, viewed 30 March 2020, <http://www.inpe.br/besm/modelo-besm/>.
Lin, S.-J. 2004, ‘A Vertically Lagrangian Finite-Volume Dynamical Core for Global Models’, Monthly Weather Review, vol. 132, no. 10, pp. 2293-307.
Matano, R.P., Schlax, M.G. & Chelton, D.B. 1993, ‘Seasonal Variability in the Southwestern Atlantic’, Journal of Geophysical Research, vol. 98, no. C10, pp. 18072-35.
Müller, T.J., Ikeda, Y., Zangenberg, N. & Nonato, L.V. 1998, ‘Direct measurements of western boundary currents off Brazil between 20°S and 28°S’, Journal of Geophysical Research: Oceans, vol. 103, no. C3, pp. 5429-37.
Nobre, P., Siqueira, L.S., de Almeida. R.A., Malagutti, M., Giarolla, E., Castelão, G.P., Bottino, M.J., Kubota, P., Figueroa, S.N., Costa, M.C., Baptista Jr, M., Irber Jr, L. & Marcondes, G.G. 2013, ‘Climate Simulation Change in the Brazilian Climate Model’, Journal of Climate, vol. 26, no. 17, pp. 6716-32.
Peterson, R.G. & Stramma, L. 1991, ‘Upper-level circulation in the South Atlantic’, Progress in Oceanography, vol. 26, no. 1, pp. 1-73.
Pincus, R., Batstone, C. P., Hofmann, R.J.P., Taylor, K.E. & Glecker, P.J. 2008, ‘Evaluating the present‐day simulation of clouds, precipitation, and radiation in climate models’, Journal of Geophysical Research: Atmosphere, vol. 113, no. D14.
Pontes, G.M., Gupta, A.S. & Taschetto, A.S. 2016, ‘Projected changes to South Atlantic boundary currents and confluence region in the CMIP5 models: The role of wind and deep ocean changes’, Environmental Research Letters, vol. 11, no. 9.
Reynolds, R.W., Rayner, N.A., Smith, T.M., Stokes, D.C. & Wang, W. 2002, ‘An improved in situ and satellite SST analysis for climate’, Journal of Climate, vol. 15, no. 13, pp. 1609-25.
Richter, I. 2015, ‘Climate model biases in the eastern tropical oceans: Causes, impacts and ways forward’, Wiley Interdisciplinary Reviews, vol. 6, no. 3, pp. 345-58.
Rocha, C.B., Silveira, I.C., Castro, B.M. & Lima, J.A. 2014, ‘Vertical structure, energetics, and dynamics of the Brazil Current System at 22°S–28°S’, Journal of Geophysical Research: Oceans, vol. 119, no. 1, pp. 52-69.
Rodrigues, R.R., Wimbush, M., Watts, D.R., Rothstein, L.M. & Ollitrault, M. 2010, ‘South Atlantic mass transports obtained from subsurface float and hydrographic data’, Journal of Marine Research, vol. 68, no. 6, pp. 819-50.
Scholze, M., Collins, W.J., Allen, I., Cornell, S.E., Huntingford, C., Joshi, M., Lowe, J., Smith, R.S. & Wild, O. 2012, ‘Earth system models: A tool to understand changes in the Earth system’, in S.E. Cornell, I.C. Prentice, J.I. House & C.J. Downy (eds), Understanding the Earth System: Global Change Science for Application, Cambridge University Press, UK, pp. 129-59.
Silveira, I.C., Schmidt, A.C., Campos, E.J., Godoi, S.S. & Ikeda, Y. 2000, ‘A Corrente do Brasil ao Largo da Costa Leste Brasileira’, Revista Brasileira de Oceanografia, vol. 48, no. 2, pp. 171-83.
Spearman, C. 1987, ‘The Proof and Measurement of Association between Two Things’, The American Journal of Psychology, vol. 100, no. 3/4, pp. 441-71.
Stramma, L. 1989, ‘The Brazil current transport south of 23°S’, Deep Sea Research Part A. Oceanographic Research Papers, vol 36, no. 4, pp. 639-46.
Stramma, L., Ikeda, Y. & Peterson, R.G. 1990, ‘Geostrophic transport in the Brazil current regions north of 20°S’, Deep Sea Research, vol. 37, no. 12, pp. 1875-86.
Toste, R., Landau, L. & Assad, L.P. 2018, ‘Downscaling of the global HadGEM2-ES results to model the future and present-day ocean conditions of the southeastern Brazilian continental shelf’, Climate Dynamics, vol. 51, no. 16, pp. 143-59.
Veiga, S.F., Nobre, P., Giarolla, E., Capistrano, V., Baptista, M., Marquez, A.L., Figueroa, S.N., Bonatti, J.P., Kubota, P. & Nobre, C.A. 2019, ‘The Brazilian Earth System Model ocean–atmosphere (BESM-OA) version 2.5: Evaluation of its CMIP5 historical simulation’, Geoscientific Model Development, vol. 12, no. 4, pp. 1613-42.
Venegas, S.A., Mysak, L.A. & Straub, D.N. 1997, ‘Atmosphere–Ocean Coupled Variability in the South Atlantic’, Journal of Climate, vol. 10, no. 11, pp. 2904-20.
Wolter, K. & Timlin, M.S. 1993, ‘Monitoring ENSO in COADS with a seasonally adjusted principal component index’, Proceedings of the 17th climate diagnostics workshop, University of Oklahoma, Norman, pp 52-7.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Anuário do Instituto de Geociências

This work is licensed under a Creative Commons Attribution 4.0 International License.
This journal is licensed under a Creative Commons — Attribution 4.0 International — CC BY 4.0, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.