Concentrations of Volatile Organic Compounds in the Megacity of São Paulo in 2006 and 2011/2012 - A Comparative Study

Authors

  • Debora Souza Alvim Instituto Nacional de Pesquisas Espaciais (INPE) - Centro de Previsão de Tempo e Estudos Climáticos - CPTEC https://orcid.org/0000-0003-1501-4563
  • Luciana Vanni Gatti Instituto Nacional de Pesquisas Espaciais - INPE Instituto de Pesquisas Energéticas e Nucleares - IPEN
  • Sergio Machado Corrêa Universidade do Estado do Rio de Janeiro - UERJ
  • Julio Barboza Chiquetto Instituto de Estudos Avançados da Universidade de São Paulo - IEA USP
  • Jayant Pendharkar Instituto Nacional de Pesquisas Espaciais (INPE) - Centro de Previsão de Tempo e Estudos Climáticos - CPTEC
  • Angélica Pretto IPEN - Instituto de Pesquisas Energéticas e Nucleares
  • Guaciara Macedo Santos University of California, Department of Earth System Science
  • Carlos de Souza Rossati IPEN - Instituto de Pesquisas Energéticas e Nucleares
  • Dirceu Luis Herdies Instituto Nacional de Pesquisas Espaciais (INPE) - Centro de Previsão de Tempo e Estudos Climáticos - CPTEC
  • Silvio Nilo Figueroa Instituto Nacional de Pesquisas Espaciais (INPE) - Centro de Previsão de Tempo e Estudos Climáticos - CPTEC
  • Paulo Nobre Instituto Nacional de Pesquisas Espaciais (INPE) - Centro de Previsão de Tempo e Estudos Climáticos - CPTEC

DOI:

https://doi.org/10.11137/2020_4_263_282

Keywords:

Ozone, Air pollution, Volatile organic compounds

Abstract

The focus of this study was to measure the Volatile Organic Compounds (VOCs) concentrations in the megacity – São Paulo Metropolitan Area (SPMA). The measurements analyzed in this study included 78 hydrocarbon (HC) samples collected during 2006, and 66 samples of HC, 62 of aldehydes and 42 of ethanol collected during 2011-2012. The observational results showed that the consumption of ethanol, gasoline and diesel from 2006 to 2012 increased by 64 %, 23 % and 25 %, respectively, with substantial changes in the atmospheric composition. The 10 most abundant VOCs in the atmosphere found during 2011/2012 at CETESB IPEN/USP air quality monitoring station were ethanol, acetaldehyde, formaldehyde, acetone, propane, ethene, ethane, butane, 1-ethyl-4-methyl benzene, and 1,2,4-trimethyl benzene. During the 2006 campaign, alkanes represented 54.8 % of the total HC concentration, alkenes 29.2 %, aromatics 13.6 %, and alkadienes 2.4 %. On the other hand, during the 2011-2012 campaign, aldehydes represented 35.3 % of the VOCs, ethanol 22.6 %, aromatics 15.5 %, alkanes 13.5 %, acetone 6.8 %, alkenes 6.0 %, and alkadienes with less than 0.1 %.  An increase in VOCs concentrations in the SPMA atmosphere from 2006 to 2012, such as aldehydes and aromatics (which are important ozone precursors) was measured.

Author Biography

Debora Souza Alvim, Instituto Nacional de Pesquisas Espaciais (INPE) - Centro de Previsão de Tempo e Estudos Climáticos - CPTEC

Atuo principalmente nos seguintes temas: poluição atmosférica, análises de compostos orgânicos voláteis (COV) na atmosfera, trabalhando com modelo OZIPR para determinar os principais COV precursores de ozônio na atmosfera. Trabalhando com validação de modelos globais na parte de aerossóis (CAM5-MAM3 e ECHAM-HAM) para futuro acoplamento destes módulos de aerossóis no modelo BESM (Brazilian Earth System Model). Fazendo validação de modelos regionais da qualidade do ar como BRAMS e WRF-CHEM com foco na América do Sul, Norte do Brasil e São Paulo. Avaliando a qualidade do ar sobre a América do Sul e globalmente com dados de satélite para aerossóis, monóxido de carbono, dióxido de nitrogênio, ozônio e queimadas. Graduada em Química pela Faculdade de Química da USP e doutora em Ciências pelo IPEN/USP. Pós-doutorado em química da atmosfera no CPTEC/INPE.

References

Alves, C. & Tomé, M. 2007. Assessment of air quality in Viana do Castelo, Portugal, in the scope of the polis programme. Química Nova, 30(7): 1555-1562.

Alvim, D.S. 2013. Estudo dos principais precursores de ozônio na região metropolitana de São Paulo [Doutorado em Tecnologia Nuclear - Materiais, Universidade de São Paulo]. https://doi.org/10.11606/T.85.2013.tde-08112013-102012

Alvim, D.S.; Gatti, L.V.; Corrêa, S.M.; Chiquetto, J.B.; de Souza Rossatti, C.; Pretto, A.; Santos, M.H.; Yamazaki, A.; Orlando, J.P. & Santos, G.M. 2016. Main ozone-forming VOCs in the city of Sao Paulo: observations, modelling and impacts. Air Quality, Atmosphere & Health, 10: 421-435.

Alvim, D.S.; Gatti, L.V.; Corrêa, S.M.; Chiquetto, J.B.; Santos, G.M.; de Souza Rossatti, C.; Pretto, A.; Rozante, J.R.; Figueroa, S.N.; Pendharkar, J. & Nobre, P. 2018. Determining VOCs Reactivity for Ozone Forming Potential in the Megacity of São Paulo. Aerosol and Air Quality Research, 18(9): 2460-2474.

Anderson, L.G. 2009. Ethanol fuel use in Brazil: air quality impacts. Energy & Environmental Science, 2(10): 1015-1037.

Andrade, J.B.; Andrade, M.V. & Pinheiro, H.L.C. 1998. Atmospheric levels of formaldehyde and acetaldehyde and their relationship with the vehicular fleet composition in Salvador, Bahia, Brazil. Journal of the Brazilian Chemical Society, 9(3): 219-223.

Andrade, M. de F.; Kumar, P.; de Freitas, E.D.; Ynoue, R.Y.; Martins, J.; Martins, L.D.; Nogueira, T.; Perez-Martinez, P.; de Miranda, R.M.; Albuquerque, T.; Gonçalves, F. L.T.; Oyama, B. & Zhang, Y. 2017. Air quality in the megacity of São Paulo: Evolution over the last 30 years and future perspectives. Atmospheric Environment, 159: 66-82.

BAA. 2015. Biodiesel Association of Australia. Etanol use around the world. http://biofuelsassociation.com.au/biofuels/ethanol/ethanol-use-around-the-world

Branco, G.M. & Branco, F.C. 2007. Inventory of mobile sources: prospective analysis and

retrospective of Proconve's benefits to air quality from 1980 to 2030. Job conducted for the Ministry of the Environment with support from the Hewlett Foundation

Brito, J.; Carbone, S.; Santos, D.A.M.; Dominutti, P.; Alves, N.O.; Rizzo, LV. & Artaxo, P. 2018. Disentangling vehicular emission impact on urban air pollution using ethanol as a tracer. Scientific Reports, 8(10679): 1-10.

Brito, J.; Wurm, F.; Yáñez-Serrano, A.M.; de Assunção, J.V.; Godoy, J.M. & Artaxo, P. 2015. Vehicular Emission Ratios of VOCs in a Megacity Impacted by Extensive Ethanol Use: Results of Ambient Measurements in São Paulo, Brazil. Environmental Science & Technology, 49(19): 11381-11387.

Carter, W.P.L. 2010. Development of the SAPRC-07 chemical mechanism. Atmospheric Environment, 44(40): 5324-5335.

Carter, W.P.L. 2000. Documentation of the SAPRC-99 Chemical Mechanism for VOC Reactivity Assessment. Final Report to California Air Resources Board, Contract 92-329 and Contract 95-308.

CETESB. 2013. Environmental Agency of the State of São Paulo. Air Quality Report for the Sao Paulo State 2012. Environmental Agency of the State of São Paulo. http://ar.cetesb.sp.gov.br/publicacoes-relatorios/

CETESB. 2016. Environmental Agency of the State of São Paulo. Air Quality Report for the Sao Paulo State 2015. Environmental Agency of the State of São Paulo. http://ar.cetesb.sp.gov.br/publicacoes-relatorios/

CETESB. 2018. Environmental Agency of the State of São Paulo. Air Quality Report for the Sao Paulo State 2017. Environmental Agency of the State of São Paulo. http://ar.cetesb.sp.gov.br/publicacoes-relatorios/

Chiquetto, J.B.; Ribeiro, F.N.D.; Alvim, D.S.; Ynoue, R.Y.; Silva, J.D. & Silva, M.E.S. 2018. Transport of Pollutants by the Sea Breeze in São Paulo under the South Atlantic High. Revista do Departamento de Geografia, 148-161.

Chiquetto, J.B.; Silva, M.E.S.; Ynoue, R.Y.; Dutra Ribieiro, F.N., Alvim, D.S.; Rozante, J.R.; Cabral-Miranda, W. & Swap, R.J. 2020. The Impact of Different Urban Land Use Types on Air Pollution in The Megacity of São Paulo. Revista Presença Geográfica, 7(1): 1-21.

Coll, I.; Rousseau, C.; Barletta, B.; Meinardi, S. & Blake, D.R. 2010. Evaluation of an urban NMHC emission inventory by measurements and impact on CTM results. Atmospheric Environment, 44(31): 3843–3855.

Colón, M.; Pleil, J.D.; Hartlage, T.A.; Lucia Guardani, M. & Helena Martins, M. 2001. Survey of volatile organic compounds associated with automotive emissions in the urban airshed of São Paulo, Brazil. Atmospheric Environment, 35(23): 4017–4031.

CONAMA. 2018. National Environment Council. Resolução No 492, de 20 de dezembro de 2018, (2018) (testimony of CONAMA). https://www.in.gov.br/materia//asset_publisher/Kujrw0TZC2Mb/content/id/56643907

Corrêa, S.M.; Arbilla, G.; Marques, M.R.C. & Oliveira, K.M.P.G. 2012. The impact of BTEX emissions from gas stations into the atmosphere. Atmospheric Pollution Research, 3(2): 163–169.

Corrêa, S.M.; Arbilla, G.; Martins, E.M.; Quitério, S.L.; de Souza Guimarães, C. & Gatti, L. V. 2010. Five years of formaldehyde and acetaldehyde monitoring in the Rio de Janeiro downtown area – Brazil. Atmospheric Environment, 44(19): 2302-2308.

de Gouw, J.A.; Gilman, J.B.; Borbon, A.; Warneke, C.; Kuster, W.C.; Goldan, P.D., Holloway, J.S.; Peischl, J.; Ryerson, T.B.; Parrish, D.D.; Gentner, D.R.; Goldstein, A.H. & Harley, R.A. 2012. Increasing atmospheric burden of ethanol in the United States: Increasing Atmospheric Burden of Ethanol. Geophysical Research Letters, 39(15): 1-6.

Dominutti, P.A.; Nogueira, T.; Borbon, A.; Andrade, M.F. & Fornaro, A. 2016. One-year of NMHCs hourly observations in São Paulo megacity: meteorological and traffic emissions effects in a large ethanol burning context. Atmospheric Environment, 142: 371-382.

Dominutti, P.; Nogueira, T.; Fornaro, A. & Borbon, A. 2020. One decade of VOCs measurements in São Paulo megacity: Composition, variability, and emission evaluation in a biofuel usage context. Science of The Total Environment, 738: 1-13.

Dunmore, R.E.; Whalley, L.K.; Sherwen, T.; Evans, M.J.; Heard, D.E.; Hopkins, J. R.; Lee, J. D.; Lewis, A. C.; Lidster, R. T.; Rickard, A. R. & Hamilton, J. F. 2016. Atmospheric ethanol in London and the potential impacts of future fuel formulations. Faraday Discussions, 189: 105-120.

Giebel, B.M.; Swart, P.K. & Riemer, D.D. 2011. New Insights to the Use of Ethanol in Automotive Fuels: A Stable Isotopic Tracer for Fossil- and Bio-Fuel Combustion Inputs to the Atmosphere. Environmental Science & Technology, 45(15): 6661-6669.

Goldan, P.D.; Kuster, W.C.; Williams, E.; Murphy, P.C.; Fehsenfeld, F.C. & Meagher, J. 2004. Nonmethane hydrocarbon and oxy hydrocarbon measurements during the 2002 New England Air Quality Study. Journal of Geophysical Research: Atmospheres, 109(D21): 1-14.

Grosjean, D. 1997. Atmospheric chemistry of alcohols. Journal of the Brazilian Chemical Society, 8(5): 433-442.

Grosjean, D.; Miguel, A.H. & Tavares, T.M. 1990. Urban air pollution in Brazil: Acetaldehyde and other carbonyls. Atmospheric Environment. Part B. Urban Atmosphere, 24(1): 101-106.

Hester, R.E. 1998. Air pollution and health. Cambridge, U.K.,Royal Society of Chemistry, p. 33-56.

Hewitt, C.N. 1999. Reactive hydrocarbons in the atmosphere. Academic Press, San Diego, p. 41-96.

IARC. 2016. International agency for Research on Cancer. Outdoor air pollution: iarc monographs on the evaluation of carcinogenic risk to humans. (Vol. 109). World Health Organization.

IBGE. 2017. Brazilian Institute of Geography and Statistics. 2016 Brazilian census. Rio de Janeiro. Results of the universe. Information base by census sector. Rio de Janeiro: IBGE.

INMETRO. 2003. National Institute of Metrology, Quality and Technology. Guidelines for Expressing Uncertainty in Measurements Rio de Janeiro: ABNT, INMETRO,120.

Jacob, D.J. 1999. Introduction to atmospheric chemistry. Princeton Univ. Press, New Jersey, p. 200-217.

Jacobson, M.Z.; Delucchi, M.A.; Bazouin, G.; Bauer, Z.A.F.; Heavey, C.C.; Fisher, E., Morris, S.B.; Piekutowski, D.J.Y.; Vencill, T.A. & Yeskoo, T.W. 2015. 100% clean and renewable wind, water, and sunlight (WWS) all-sector energy roadmaps for the 50 United States. Energy & Environmental Science, 8(7): 2093–2117. Nome da revista por extenso

Kirstine, W.V. & Galbally, I.E. 2012. The global atmospheric budget of ethanol revisited. Atmospheric Chemistry and Physics, 12(1): 545–555.

Laurent, A. & Hauschild, M.Z. 2014. Impacts of NMVOC emissions on human health in European countries for 2000–2010: Use of sector-specific substance profiles. Atmospheric Environment, 85: 247–255.

Martins, E.M.; Nunes, A.C.L. & Corrêa, S.M. 2015. Understanding Ozone Concentrations During Weekdays and Weekends in the Urban Area of the City of Rio de Janeiro. Journal of the Brazilian Chemical Society, 26(10): 1967-1975.

Martins, E.M.; Arbilla, G.; Bauerfeldt, G.F. & Paula, M. de. 2007. Atmospheric levels of aldehydes and BTEX and their relationship with vehicular fleet changes in Rio de Janeiro urban area. Chemosphere, 67(10): 2096-2103.

Martins, L.D.; Andrade, M.F.; Ynoue, R.Y.; Albuquerque, É.L.; Tomaz, E. & Vasconcellos, P.C. 2008. Ambiental volatile organic compounds in the megacity of São Paulo. Química Nova, 31(8): 2009-2013.

Na, K. & Kim, Y.P. 2001. Seasonal characteristics of ambient volatile organic compounds in Seoul, Korea. Atmospheric Environment, 35(15), 2603–2614.

Naik, V.; Fiore, A.M.; Horowitz, L.W.; Singh, H.B.; Wiedinmyer, C.; Guenther, A., de Gouw, J.A.; Millet, D.B.; Goldan, P.D.; Kuster, W.C. & Goldstein, A. 2010. Observational constraints on the global atmospheric budget of ethanol. Atmospheric Chemistry and Physics, 10(12): 5361-5370.

Nguyen, H. 2001. Atmospheric alcohols and aldehydes concentrations measured in Osaka, Japan and in Sao Paulo, Brazil. Atmospheric Environment, 35(18): 3075-3083.

Niven, R.K. 2005. Ethanol in gasoline: environmental impacts and sustainability review article. Renewable and Sustainable Energy Reviews, 9(6): 535-555.

Nobre, P.; Pereira, E.B.; Lacerda, F.F.; Burzstin, M. & Haddad, E. 2017. O paradigma da abundância para o desenvolvimento sustentável do Nordeste Semiárido: o papel da geração fotovoltaica distribuída. In: Desenvolvimento Sustentável no Nordeste Semiárido. Instituto de Pesquisa Econômica e Aplicada. p. 107-142.

Nogueira, T.; Dominutti, P.A.; de Carvalho, L.R.F.; Fornaro, A. & Andrade, M.F. 2014. Formaldehyde and acetaldehyde measurements in urban atmosphere impacted by the use of ethanol biofuel: Metropolitan Area of Sao Paulo (MASP), 2012–2013. Fuel, 134: 505-513.

Okada, Y.; Nakagoshi, A.; Tsurukawa, M.; Matsumura, C.; Eiho, J. & Nakano, T. 2012. Environmental risk assessment and concentration trend of atmospheric volatile organic compounds in Hyogo Prefecture, Japan. Environmental Science and Pollution Research, 19(1): 201-213.

Orlando, J.P.; Alvim, D.S.; Yamazaki, A.; Corrêa, S.M. & Gatti, L.V. 2010. Ozone precursors for the São Paulo Metropolitan Area. Science of The Total Environment, 408(7): 1612-1620.

Pérez-Martínez, P.J.; Miranda, R.M.; Nogueira, T.; Guardani, M.L.; Fornaro, A.; Ynoue, R. & Andrade, M.F. 2014. Emission factors of air pollutants from vehicles measured inside road tunnels in São Paulo: case study comparison. International Journal of Environmental Science and Technology, 11(8): 2155-2168.

Salameh, T.; Borbon, A.; Afif, C.; Sauvage, S.; Leonardis, T.; Gaimoz, C. & Locoge, N. 2016. Composition of gaseous organic carbon during ECOCEM in Beirut, Lebanon: new observational constraints for VOC anthropogenic emission evaluation in the Middle East [Preprint]. Gases/Field Measurements/Troposphere/Chemistry (chemical composition and reactions).

Salvo, A. & Geiger, F.M. 2014. Reduction in local ozone levels in urban São Paulo due to a shift from ethanol to gasoline use. Nature Geoscience, 7(6): 450-458.

Sarkar, C.; Chatterjee, A.; Majumdar, D.; Roy, A.; Srivastava, A.; Ghosh, S. K. & Raha, S. 2017. How the Atmosphere over Eastern Himalaya, India is Polluted with Carbonyl Compounds? Temporal Variability and Identification of Sources. Aerosol and Air Quality Research, 17(9): 2206-2223.

Scaramboni, C. 2018. Aspectos do papel do peróxido de hidrogênio como oxidante na atmosfera no contexto das atuais políticas públicas de emissões veiculares. Programa de Pós-graduação em Química, Universidade de São Paulo. Dissertação de Mestrado, 61p.

Schilling, M.; Voigt, G.; Tavares, T. & Klockow, D. 1999. An enzymatic-fluorimetric method for monitoring of ethanol in ambient air. Fresenius’ Journal of Analytical Chemistry, 364(12): 100-105.

SE. 2008. Secretary of Sao Paulo State Energy. Statistical Yearbook of energy by municipality in the state of São Paulo in 2007, 2008. Secretary of Sao Paulo State Energy.

SE. 2012. Secretary of Sao Paulo State Energy. Statistical Yearbook of energy by municipality in the state of São Paulo in 2011, 2012. Secretary of Sao Paulo State Energy.

SE. 2019. Secretary of Sao Paulo State Energy. Statistical Yearbook of energy by municipality in the state of São Paulo in 2018. Secretary of Sao Paulo State Energy.

Seinfeld, J.H. & Pandis, S.N. 2016. Atmospheric chemistry and physics: from air pollution to climate change (3rd edition). Wiley. p. 175-264.

Silva, C.M.; Souza, E.C.C.A.; da Silva, L.L.; Oliveira, R.L.; Corrêa, S.M. & Arbilla, G. 2016. Volatile Organic Compounds in the Atmosphere of the Botanical Garden of the City of Rio de Janeiro: A Preliminary Study. Bulletin of Environmental Contamination and Toxicology, 97(5): 653-658. https://doi.org/10.1007/s00128-016-1887-3

Stolf, R. & Oliveira, A.P.R. 2020. The Success of The Brazilian Alcohol Program (Proálcool) - A Decade-by-Decade Brief History of Ethanol In Brazil. Engenharia Agrícola, 40(2): 243-248.

Suarez-Bertoa, R.; Zardini, A.A.; Platt, S.M.; Hellebust, S.; Pieber, S.M.; El Haddad, I.; Temime-Roussel, B.; Baltensperger, U.; Marchand, N.; Prévôt, A.S.H. & Astorga, C. 2015. Primary emissions and secondary organic aerosol formation from the exhaust of a flex-fuel (ethanol) vehicle. Atmospheric Environment, 117: 200-211.

Nogueira, T.; Dominutti, P.; Fornaro, A. & Andrade, M. 2017. Seasonal Trends of Formaldehyde and Acetaldehyde in the Megacity of São Paulo. Atmosphere, 8(144): 1-18.

U.S. EPA. 1999a. United States Environmental Protection Agency. Compendium Method TO-14A. Determination Of Volatile Organic Compounds (VOCs) In Ambient Air Using Specially Prepared Canisters With Subsequent Analysis By Gas Chromatography. United States Environmental Protection Agency.

U.S. EPA. 1999b. United States Environmental Protection Agency. Compendium Method TO-15. Determination Of Volatile Organic Compounds (VOCs) In Air Collected In Specially-Prepared Canisters And Analyzed By Gas Chromatography/ Mass Spectrometry (GC/MS). United States Environmental Protection Agency. https://www3.epa.gov/ttnamti1/files/ambient/airtox/to-15r.pdf

U.S. EPA. 1999c. United States Environmental Protection Agency. Compendium Method TO-11A. Determination of Formaldehyde in Ambient Air Using Adsorbent Cartridge Followed by High Performance Liquid Chromatography (HPLC). United States Environmental Protection Agency.

Vasconcellos, P.C.; Carvalho, L.R.F. & Pool, C.S. 2005. Volatile organic compounds inside urban tunnels of São Paulo City, Brazil. Journal of the Brazilian Chemical Society, 16(6a): 1210-1216.

Wang, M.; Shao, M.; Chen, W.; Yuan, B.; Lu, S.; Zhang, Q.; Zeng, L. & Wang, Q. 2014. A temporally and spatially resolved validation of emission inventories by measurements of ambient volatile organic compounds in Beijing, China. Atmospheric Chemistry and Physics, 14(12): 5871-5891.

Wang, Q.; Han, Z.; Tijian, W. & Yoshiro, H. 2007. An estimate of biogenic emissions of volatile organic compounds during summertime in China. Environmental Science and Pollution Research - International, 14(1): 69-75.

WHO. 2010. World Health Organization. Who guidelines for indoor air quality: selected pollutants. https://apps.who.int/iris/bitstream/handle/10665/260127/9789289002134-eng.pdf?sequence=1&isAllowed=y

Downloads

Published

2020-12-18

Issue

Section

Article