Filling Materials in Brittle Structures as Indicator of Cenozoic Tectonic Events in Southeastern Brazil

Authors

  • Salomão Silva Calegari Universidade Federal de Minas Gerais, Instituto de Geociências, Centro de Pesquisa Professor Manoel Teixeira da Costa, Programa de Pós-graduação em Geologia, Campus Pampulha, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brazil
  • Thaís Ruy Aiolfi Universidade Estadual do Norte Fluminense Darcy Ribeiro, Centro de Ciência e Tecnologia, Programa de Pós-graduação em Ciências Naturais, Campus Leonel Brizola, Av. Alberto Lamego, 2000, Parque Califórnia, 28013-602, Campos dos Goytacazes, RJ, Brazil
  • Mirna Aparecida Neves Universidade Federal do Espírito Santo, Departamento de Geologia, Campus Alegre, Alto Universitário, s/n, Guararema, 29500-000, Alegre, ES, Brazil
  • Caroline Cibele Vieira Soares Universidade Federal do Espírito Santo, Departamento de Geologia, Campus Alegre, Alto Universitário, s/n, Guararema, 29500-000, Alegre, ES, Brazil
  • Rodson de Abreu Marques Universidade Federal do Espírito Santo, Departamento de Geologia, Campus Alegre, Alto Universitário, s/n, Guararema, 29500-000, Alegre, ES, Brazil
  • Fabrício de Andrade Caxito Universidade Federal de Minas Gerais, Instituto de Geociências, Centro de Pesquisa Professor Manoel Teixeira da Costa, Programa de Pós-graduação em Geologia, Campus Pampulha, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brazil

DOI:

https://doi.org/10.11137/2020_2_237_254

Keywords:

Brittle Structures, Relative Dating, Cenozoic.

Abstract

The filling materials in brittle structures can provide useful information about the Cenozoic evolution developed over proterozoic terrains. When these materials are affected by faults, they record deformation phases that can be determined chronologically and, in the occurrence of lateritic materials, it is possible to infer the paleoenvironmental conditions during the mineral formation. This work aimed to identify crystalline phases of brittle structure filling materials and to propose evolutionary interpretations for Cenozoic tectonic reactivation based on literature data. The study area is located in the Southern part of the Espírito Santo State, near the Brazilian Southeastern Continental Margin, where proterozoic geological structures have been reactivated since the mesozoic rift phase, up to the Holocene. The mineral assemblage found in the filling materials includes primary minerals such as quartz, muscovite, microcline, rutile, titanite, and bannisterite; and the weathering minerals such as kaolinite, illite, hematite, goethite, hydrobiotite, lithiophorite and, birnessite. The mineralogical association found in the filling materials denotes the action of fluid phases with mineral precipitation at the brittle discontinuities during the weathering processes that occurred during the Cenozoic, probably between the Miocene and the Pleistocene. The faults, which striations are marked on the filling materials, originated after (in the case of the manganese oxides) or during (in the case of the illite) the mineral formation, indicating that the maximum age of these faults is in the Miocene. The origin of the brittle structures that affected the filling materials studied here is linked to the uplifting of the Continental Brazilian Margin, when ancient geological structures were reactivated asnormal faults due to the local action of an extensional regime.

References

Allaby, M. (ed.). 2008. Dictionary of Earth Sciences. 3ª Ed.

Oxford, Oxford University Press. 661 p.

Alkmim F.F.; Marsak, S.; Pedrosa-Soares, A.C.; Peres, G.G.;

Cruz, S.C.P. & Whittinhgton, A. 2006. Kinematic

evolution of the Araçuaí-West Congo orogen in

Brazil and Africa: Nutcracker tectonics during the

Neoproterozoic assembly of Gondwana. Precambrian

Research, 149 (1-2): 46-64.

Almeida, F.F.M.; Hasui, Y.; Brito-Neves, B.B. & Fuck, R.A.

Brazilian Structural Provinces: An Introduction.

Earth-Science Reviews, 7 (1-2): 1-29.

Anand, R.R. & Paine, M. 2002. Regolith geology of the

Yilgarn Craton, Western Australia: implications for

exploration. Australian Journal of Earth Sciences, 49:

-162.

Angelier, J. & Mechler, P. 1977. Sur une methode graphique

de recherche des contraintes principales egalement

utilisables en tectonique et en seismologie: la methode

des diedres droits. Bulletin de la Société Géologique

de France, S7-XIX (6): 1309-1318.

Anthony, J.W.; Bideaux, R.A.; Bladh, K.W. & Nichols, M.C.

(eds.). 2001. Handbook of Mineralogy, Mineralogical

Society of America. USA. Available in: http://www.

handbookofmineralogy.org. Accessed 30 ago 2016.

Augustin, C.H.R.R.; Lopes, M.R.S. & Silva, S.M. 2013.

Lateritas: um conceito ainda em construção. Revista

Brasileira de Geomorfologia, 14 (3): 241-257.

Balsamo, F.; Bezerra, F.H.R.; Vieira, M.M. & Storti, F. 2013.

Structural control on the formation of iron-oxide

concretions and Liesegang bands in faulted, poorly

lithified Cenozoic sandstones of the Paraíba Basin,

Brazil. Geological Society of America Bulletin, 125

(5-6): 913-931.

Bezerra, F.H.R. & Vita-Finzi, C. 2000. How active is a passive

margin? Paleoseismicity in Northeastern Brasil.

Geology, 28: 591-594.

Brindley, G.W. & Brown, G. 1980. Crystal Structures of Clay

Minerals and Their X-ray Identification. London,

Mineralogical Society. 495 p.

Brito-Neves, B.B.; Campos Neto, M.C. & Fuck, R.A. 1999. From Rodinia to Western Gondwana: an approach

to the Brasiliano-Pan African Cycle and orogenic

collage. Episodes, 22(3): 155-166.

Calegari, S.S.; Neves, M.A.; Guadagnin, F.; França, G.S. &

Vincentelli, M.G.C. 2016. The Alegre Lineament and

its role over the tectonic evolution of the Campos

Basin and adjacent continental margin, Southeastern

Brazil. Journal of South American Earth Sciences, 69:

-242.

Carmo, I.O. & Vasconcelos, P.M. 2004. Geochronological

evidence for pervasive Miocene weathering,

Minas Gerais, Brazil. Earth Surface Processes and

Landforms, 29 (11): 1303-1320.

Carmo, I.O. & Vasconcelos, P.M. 2006. 40Ar/39Ar geochronology

constraints on late miocene weathering rates in Minas

Gerais, Brazil. Earth and Planetary Science Letters,

: 80-94.

Churchman, G.J. & Lowe, D.J. 2012. Alteration, formation

and occurrence of minerals in soils. In: HUANG,

P.M.; LI, Y. & SUMNER, M.E. (eds.). Handbook of

Soil Sciences. Properties and Processes. CRC Press,

Florida, p. 20.1-20.72.

Cogné, N.; Gallagher, K.; Cobbold, P.R.; Riccomini, C. &

Gautheron, C. 2012. Post-breakup tectonics in

southeast Brazil from thermochronological data and

combined inverse-forward thermal history modeling.

Journal of Geophysical Research, 117: 1-16.

Costa, M. 1991. Aspectos geológicos dos lateritos da Amazônia.

Revista Brasileira de Geociências, 21(2): 146-160.

Cunningham, D.; Alkmim, F.F. & Marshak, S. 1998. A structural

transect across the coastal mobile belt in the Brazilian

Highlands (latitude 20°S): the roots of a Precambrian

transpressional orogen. Precambrian Research, 92(3):

-275.

De Campos, C.M.; Mendes, J.C.; Ludka, I.P.; Medeiros, S.R.;

Moura, J.C. & Wallfass, C. 2004. A review of the

Brasiliano magmatism in southern Espírito Santo,

Brazil, with emphasis on post-collisional magmatism.

Journal of the Virtual Explorer, 17: 1-35.

De Putter, T.; Ruffet, G.; Yans, J. & Mees, F. 2015. The age

of supergene manganese deposits in Katanga and its

implications for the Neogene evolution of the African

Great Lakes Region. Ore Geology Reviews, 71:

-362.

Delvaux, D.; Moeys, R.; Stapel, G.; Petit, C.; Levi, K.;

Miroshnichenko, A.; Ruzhich, V. & San’kov, V. 1997.

Paleostress reconstructions and geodynamics of the

Baikal region, Central Asia, Part 2. Cenozoic rifting.

Tectonophysics, 282: 1-38.

Delvaux, D. & Sperner, B. 2003. Stress tensor inversion from

fault kinematic indicators and focal mechanism data:

the TENSOR program. In: NIEUWLAND, D.A.

(ed.), New Insights into Structural Interpretation and

Modelling, Special Publication of the Geological

Society of London, 212, p. 75-100.

Deng, X.D. & Li, J.W. 2013. 40Ar/39Ar dating of cryptomelane

from the Baye manganese deposit, SW Yunnan,

China: implications for growth rate of supergene

Mn-oxide veins. Science China: Earth Sciences,

(10): 1654-1663.

Dunn, P.J.; Leavens, P.B.; Norberg, J.A. & Ramik, R.A.

Bannisterite: new chemical data and empirical

fomrulae. American Mineralogist, 66: 1063-1067.

ERSDAC. 2013. Earth Remote Sensing Data Analysis Center

(ASTER GDEM). Available in: http://gdem.ersdac.

jspacesystems.or.jp. Accessed 10 set 2013.

Faulkner, D.R.; Jackson, C.A.L.; Lunn, R.J.; Schlische, R.W.;

Shipton, Z.K.; Wibberley, C.A.J. & Withjack, M.O.

A review of recent developments concerning

the structure, mechanics and fluid flow properties of

fault zones. Journal of Structural Geology, 32(11):

-1575.

Féboli, W. 1993. Programa Levantamentos Geológicos

Básicos: Folha Piúma (SF. 24-V-A-VI,), Estado do

Espírito Santo, escala 1:100.000. Brasília: DNPM/

CPRM, 144 p.

Frohlich, C. 1992. Triangle diagrams: ternary graphs to

display similarity and diversity of earthquake focal

mechanisms. Physics of the Earth and Planetary

Interiors, 75: 193-198.

Fuck, R.A.; Brito-Neves, B.B. & Schobbenhaus, C. 2008.

Rodinia descendants in South America. Precambrian

Research, 160(1-2): 108-126.

Gatto, L.C.S.; Ramos, V.L.S.; Nunes, B.T.A.; Mamede, L.;

Góes, M.H.B.; Mauro, C.A.; Alvarenga, S.M.;

Franco, E.M.S.; Quirico, A.F. & Neves, L.B. 1983.

Geomorfologia. In: Moreira, H.F. (ed.). Projeto

RADAMBRASIL - Levantamento de Recursos

Naturais: Folhas SF-23/24, Rio de Janeiro/Vitória. 32,

p 305-384.

GEBCO. 2020. General Bathymetric Chart of the Oceans.

Available in: https://www.gebco.net/data_and_

products/gridded_bathymetry_data. Accessed 25 apr

GEOBASES. 2002. Sistema Integrado de Bases Geoespaciais

do Estado do Espírito Santo. INCAPER. Available

in: http://www.geobases.es.gov.br/. Accessed 28 ago

Grohmann, C.H.; Campanha, G.A.C. & Soares Junior, A.V.

OpenStereo: um programa Livre e multiplataforma

para análise de dados estruturais. In: XIII SIMPÓSIO

NACIONAL DE ESTUDOS TECTÔNICOS.

Campinas, 2011. Paper, p. 26-28.

Hackspacher, P.C.; Ribeiro, L.F.B.; Ribeiro, M.C.S.; Fetter,

A.H.; Hadler Neto, J.C.; Tello, C.E.S. & Dantas,

E.L. 2004. Consolidation and break-up of the

South American Platform in Southeastern Brazil:

tectonothermal and denudation histories. Gondwana

Research, 7(1): 91-101.

Harman, R.; Gallagher, K.; Brown, R.; Raza, A. & Bizzi, L. 1998.

Accelerated denudation and tectonic/geomorphic

reactivation of the cratons of Northeastern Brazil

during the Late Cretaceous. Journal of Geophysical

Research, 103 (B11): 27091-27105.

Heilbron, M.; Pedrosa-Soares, A.C.; Neto, M.C.C.; Silva,

L.C.; Trow, R.A.J. & Janasi, V.A. 2004. A

Província Mantiqueira. In: MANTESSO-NETO,

V.; BARTORELLI, A.; CARNEIRO, C.D.R &

BRITO-NEVES, B.B. (eds.). Geologia do Continente

Sul-Americano: evolução da obra de Fernando Flávio

Marques de Almeida. São Paulo, Becca, p. 180-212.

Horn, A.H.; Faria, B.; Gardini, G.M.; Vasconcellos, L. &

Oliveira, M.R. 2007. Programa Geologia do Brasil:

Folha Espera Feliz (SE24-V-A-IV), relatório final,

escala 1:100.000. Belo Horizonte, UFMG/CPRM, 72

p.

Jelinek, A.R.; Chemale JR.F.; Van Der Beek, P.A.; Guadagnin,

F.; Cupertino, J.A. & Viana, A. 2014. Denudation

history and landscape evolution of the northern

East-Brazilian continental margin from apatite

fission-track thermochronology. Journal of South

American Earth Sciences, 54: 158-181.

Karl, M.; Glasmacher, U.A.; Kollenz, S.; Franco-Magalhaes,

A.O.B.; Stockli, D.F. & Hackspacher, P.C. 2013.

Evolution of the South Atlantic passive continental

margin in Southern Brazil derived from zircon

and apatite (U–Th–Sm)/He and fission-track data.

Tectonophysics, 604: 224-244.

Kurz, W.; Imber, J.; Wibberley, C.A.J.; Holdsworth, R.E. &

Collettini, C. 2008. The internal structure of fault

zones: fluid flow and mechanical properties. In:

WIBBERLEY, C.A.J.; KURZ, W.; IMBER, J.;

HOLDSWORTH, R.E. & COLLETTINI, C. (eds.)

The internal structure of fault zones: implications for

mechanical and fluid-flow properties. The Geological

Society, London, Special publication, 299, p. 1-3.

Lourenço, F.S.; Alkmim, F.F.; Araújo, M.N.C.; Romeiro,

M.A.T.; Matos, G.C. & Crósta, A.P. 2016. The

Piúma lineament, southern Espírito Santo: structural

expression and tectonic significance. Brazilian

Journal of Geology, 46(4): 531-546.

Meunier, A. 2005. Clays. Berlin, Springer, 406 p.

Modenesi-Gauttieri, M.C.; Toledo, M.C.M; Hiruma, S.T.;

Taioli, F. & Shimada, H. 2011. Deep weathering and

landscape evolution in a tropical plateau. Catena, 85:

-230.

Monteiro, H.S.; Vasconcelos, P.M.; Farley, K.A.; Spier, C.A.

& Mello, C.L. 2014. (U–Th)/He geochronology

of goethite and the origin and evolution of cangas.

Geochimica et Cosmochimica Acta, 131: 267-289.

Morais Neto, J.M.; Hegarty, K.A.; Karner, G.D. & Alkmim,

F.F. 2009. Timing and mechanisms for the generation

and modification of the anomalous topography of the

Borborema Province, northeastern Brazil. Marine and

Petroleum Geology, 26(7): 1070-1086.

Noce, C.M.; Pedrosa-Soares, A.C.; Silva, L.C. & Alkmim, F.F.

O embasamento arqueano e paleoproterozóico

do Orógeno Araçuaí. Geonomos, 15(1): 17-23.

Novo, T.A.; Noce, C.M.; Batista, G.A.P.; Quéméneur, J.J.G.;

Martins, B.S.; Santos, S.W.M.; Carneiro, G.A. &

Horn, A.H. 2014. Programa Geologia do Brasil:

Geologia e Recursos Minerais da Folha Manhumirim

(SF24-V-A-IV), Estados do Espírito Santo e Minas

Gerais, escala 1:100.000, Belo Horizonte, CPRM, 77

p.

Oberlin, A. & Couty, R. 1970. Conditions of kaolinite formation

during alteration of some silicates by water at 200°C.

Clays and Clay Minerals, 18: 347-356.

Pedrosa-Soares, A.C.; Campos, C.; Noce, C.M.; Silva, L.C.;

Roncato, J.; Novo, T.; Medeiros, S.; Castañeda,

C.; Queiroga, G.; Dantas, E.; Dussin, I. & Alkmim,

F.F. 2011. Late Neoproterozoic-Cambrian granitic

magmatism in the Araçuaí Orogen, the Eastern

Brazilian Pegmatite Province and related mineral

resources (SE Brazil). Journal of the Geological

Society of London, 350: 25-51.

Pedrosa-Soares, A.C.; Alkmim, F.F.; Tack, L.; Noce, C.M;

Babinski, M.; Silva, L.C. & Martins-Neto, M.A. 2008.

Similarities and differences between the Brazilian

and African counterparts of the Neoproterozoic

Araçuaí-West Congo Orogen. Journal of the

Geological Society of London, 294: 153-172.

Pedrosa-Soares, A.C.; Noce, C.M.; Alkmim, F.F.; Silva, L.C.;

Babinski, M.; Cordani, U. & Castañeda, C. 2007.

Orógeno Araçuaí: síntese do conhecimento 30 anos

após Almeida 1977. Geonomos, 15(1): 1-16.

Pedrosa-Soares, A.C.; Noce, C.M.; Wiedemann, C.M. & Pinto,

C.P. 2001. The Araçuaí-West-Congo Orogen in Brazil:

an overview of a confined orogen formed during

Gondwanaland assembly. Precambrian Research,

(1-4): 307-323.

Pedrosa-Soares, A.C. & Wiedemann-Leonardos, C.M. 2000.

Evolution of the Araçuaí Belt and its connection to

the Ribeira Belt, Eastern Brazil. In: CORDANI U.G.;

MILANI, E.J.; TOMAZ FILHO, A. & CAMPOS,

D.A. (eds.). Tectonic Evolution of South America. São

Paulo, Sociedade Brasileira de Geologia, p. 265-285.

Riccomini, C.; Peloggia, A.U.G.; Saloni, J.C.L.; Kohnke, M.W.

& Figueira, R.M. 1989. Neotectonic activity in the

Serra do Mar rift system (southeastern Brazil). Journal

of South America Earth Sciences, 2(2): 191-197.

Righi, D & Meunier, A. 1995. Origin of Clays by Rock

Weathering and Soil Formation. In: VELDE, B.

(ed.) Origin and mineralogy of clays. Clays and the

environment. Springer, Berlin, p. 43-161.

Romano, A.W. & Castañeda, C. 2006. A tectônica distensiva

pós-mesozoica no condicionamento dos depósitos de

bauxita da mata mineira. Geonomos, 14(1-2): 1-5.

Ross, J. 2011. Relevo brasileiro: uma nova proposta de

classificação. Revista do Departamento de Geografia,

: 25-39.

Salvador, E.D. & Riccomini, C. 1995. Neotectônica da região

do alto estrutural de Queluz (SP-RJ, Brasil). Revista

Brasileira de Geociências, 25(3): 151-164.

Santos, M. & Ladeira, F.S.B. 2006. Tectonismo em perfis de

alteração da Serra de Itaqueri (SP): Análise através

de indicadores cinemáticos de falhas. Geociências,

(1): 135-149.

Scheinost, A.C. 2004. Metal Oxides. In: HILLEL, D (ed.).

Encyclopedia of Soils in the Environment. Elsevier, 2,

p. 428-438.

Shuster, D.L.; Farley, K.A.; Vasconcelos, P.M.; Balco, G.;

Monteiro, H.S.; Waltenberg, K. & Stone, J.O. 2012.

Cosmogenic 3

He in hematite and goethite from

Brazilian “canga” duricrust demonstrates the extreme

stability of these surfaces. Earth and Planetary

Science Letters, 329-330: 41-50.

Silva, L.C.; Mcnaughton, N.J.; Armstrong, R.; Hartmann,

L.A. & Fletcher, I.R. 2005. The Neoproterozoic

Mantiqueira Province and its African connections:

a zircon-based U–Pb geochronologic subdivision

for the Brasiliano/Pan-African systems of orogens.

Precambrian Research, 136(3-4): 203-240.

Silva, M.A.; Camozzato, E.; Paes, V.J.C.; Junqueira, P.A.

& Ramgrab, G.E. Folha SF.24-Vitoria. 2004.

SCHOBBENHAUS, C.; GONÇALVES, J.H.;

SANTOS, J.O.S.; ABRAM, M.B.; LEÃO NETO, R.;

MATOS, G.M.M.; VIDOTTI, R.M.; RAMOS, M.A.B.

& JESUS, J.D.A. (eds.), 2004. Carta Geológica

do Brasil ao Milionésimo, Sistema de Informações

Geográficas. Programa Geologia do Brasil. Brasília,

CPRM.

Silva, T.P. & Mello, C.L. 2011. Reativações Neotectônicas na

Zona de Cisalhamento do Rio Paraíba do Sul (Sudeste

do Brasil). Geologia USP. Série Científica, 11(1):

-111.

Spier, C.A.; Vasconcelos, P.M. & Oliveira, S.M.B. 2006.

Ar/39Ar geochronological constraints on the

evolution of lateritic iron deposits in the Quadrilátero

Ferrífero, Minas Gerais, Brazil. Chemical Geology,

(1-2): 79-104.

Vasconcelos. P.M.; Becker, T.A; Renne, P.R & Brimhal, G.H.

Age and duration of weathering by 40K-40Ar and

Ar/39Ar analysis of potassium-manganese oxides.

Science, 258: 451-455.

Vasconcelos, P.M. & Carmo, I.O. 2018. Calibrating

denudation chronology through 40Ar/39Ar weathering

geochronology. Earth-Science Reviews, 179: 411-435.

Velde, B. & Meunier, A. 2008. The Origin of Clay Minerals in

Soils and Weathered Rocks. Berlim, Springer, 406 p.

Vieira, V.S. & Menezes, R.G. (org.). 2015. Geologia e

Recursos Minerais do Estado do Espírito Santo: texto

explicativo do mapa geológico e de recursos minerais,

escala 1:400.000. Belo Horizonte, CPRM, 289 p.

Vodyanitskii, Y.N.; Vasil’ev, A.A.; Lesovaya, S.N.; Sataev, E.F

& Sivtsov, A.V. 2004. Formation of Manganese Oxides

in Soils. Eurasian Soil Science, 37(6): 572-584.

Wiedemann, C.M.; Campos, C.M.; Medeiros, S.R.; Mendes,

J.C.; Ludka, I.P. & Moura, J.C. 2002. Architecture of

Late orogenic plutons in the Araçuaí-Ribeira Folded

Belt, Southeast Brazil. Gondwana Research, 19:

-399.

Zalán, P.V. & Oliveira, J.A.B. 2005. Origem e evolução do

Sistema de Riftes Cenozóicos do Sudeste do Brasil.

Boletim de Geociências da Petrobras,13(2): 269-300.

Zhang, Y.; Schaubs, P.M.; Zhao, C.; Ord, A. Hobbs, B.E.

& Barnicoat, A.C. 2008. Fault-related dilation,

permeability enhancement, fluid flow and mineral

precipitation patterns: numerical models. In:

WIBBERLEY, C.A.J.; KURZ, W.; IMBER, J.;

HOLDSWORTH, R.E. & COLLETTINI, C. (eds.).

The Internal Structure of Fault Zones: implications for

mechanical and fluid-flow properties. The Geological

Society, London, 299, p. 239-255.

Downloads

Published

2020-08-21

Issue

Section

Article