Filling Materials in Brittle Structures as Indicator of Cenozoic Tectonic Events in Southeastern Brazil
DOI:
https://doi.org/10.11137/2020_2_237_254Keywords:
Brittle Structures, Relative Dating, Cenozoic.Abstract
The filling materials in brittle structures can provide useful information about the Cenozoic evolution developed over proterozoic terrains. When these materials are affected by faults, they record deformation phases that can be determined chronologically and, in the occurrence of lateritic materials, it is possible to infer the paleoenvironmental conditions during the mineral formation. This work aimed to identify crystalline phases of brittle structure filling materials and to propose evolutionary interpretations for Cenozoic tectonic reactivation based on literature data. The study area is located in the Southern part of the Espírito Santo State, near the Brazilian Southeastern Continental Margin, where proterozoic geological structures have been reactivated since the mesozoic rift phase, up to the Holocene. The mineral assemblage found in the filling materials includes primary minerals such as quartz, muscovite, microcline, rutile, titanite, and bannisterite; and the weathering minerals such as kaolinite, illite, hematite, goethite, hydrobiotite, lithiophorite and, birnessite. The mineralogical association found in the filling materials denotes the action of fluid phases with mineral precipitation at the brittle discontinuities during the weathering processes that occurred during the Cenozoic, probably between the Miocene and the Pleistocene. The faults, which striations are marked on the filling materials, originated after (in the case of the manganese oxides) or during (in the case of the illite) the mineral formation, indicating that the maximum age of these faults is in the Miocene. The origin of the brittle structures that affected the filling materials studied here is linked to the uplifting of the Continental Brazilian Margin, when ancient geological structures were reactivated asnormal faults due to the local action of an extensional regime.
References
Allaby, M. (ed.). 2008. Dictionary of Earth Sciences. 3ª Ed.
Oxford, Oxford University Press. 661 p.
Alkmim F.F.; Marsak, S.; Pedrosa-Soares, A.C.; Peres, G.G.;
Cruz, S.C.P. & Whittinhgton, A. 2006. Kinematic
evolution of the Araçuaí-West Congo orogen in
Brazil and Africa: Nutcracker tectonics during the
Neoproterozoic assembly of Gondwana. Precambrian
Research, 149 (1-2): 46-64.
Almeida, F.F.M.; Hasui, Y.; Brito-Neves, B.B. & Fuck, R.A.
Brazilian Structural Provinces: An Introduction.
Earth-Science Reviews, 7 (1-2): 1-29.
Anand, R.R. & Paine, M. 2002. Regolith geology of the
Yilgarn Craton, Western Australia: implications for
exploration. Australian Journal of Earth Sciences, 49:
-162.
Angelier, J. & Mechler, P. 1977. Sur une methode graphique
de recherche des contraintes principales egalement
utilisables en tectonique et en seismologie: la methode
des diedres droits. Bulletin de la Société Géologique
de France, S7-XIX (6): 1309-1318.
Anthony, J.W.; Bideaux, R.A.; Bladh, K.W. & Nichols, M.C.
(eds.). 2001. Handbook of Mineralogy, Mineralogical
Society of America. USA. Available in: http://www.
handbookofmineralogy.org. Accessed 30 ago 2016.
Augustin, C.H.R.R.; Lopes, M.R.S. & Silva, S.M. 2013.
Lateritas: um conceito ainda em construção. Revista
Brasileira de Geomorfologia, 14 (3): 241-257.
Balsamo, F.; Bezerra, F.H.R.; Vieira, M.M. & Storti, F. 2013.
Structural control on the formation of iron-oxide
concretions and Liesegang bands in faulted, poorly
lithified Cenozoic sandstones of the Paraíba Basin,
Brazil. Geological Society of America Bulletin, 125
(5-6): 913-931.
Bezerra, F.H.R. & Vita-Finzi, C. 2000. How active is a passive
margin? Paleoseismicity in Northeastern Brasil.
Geology, 28: 591-594.
Brindley, G.W. & Brown, G. 1980. Crystal Structures of Clay
Minerals and Their X-ray Identification. London,
Mineralogical Society. 495 p.
Brito-Neves, B.B.; Campos Neto, M.C. & Fuck, R.A. 1999. From Rodinia to Western Gondwana: an approach
to the Brasiliano-Pan African Cycle and orogenic
collage. Episodes, 22(3): 155-166.
Calegari, S.S.; Neves, M.A.; Guadagnin, F.; França, G.S. &
Vincentelli, M.G.C. 2016. The Alegre Lineament and
its role over the tectonic evolution of the Campos
Basin and adjacent continental margin, Southeastern
Brazil. Journal of South American Earth Sciences, 69:
-242.
Carmo, I.O. & Vasconcelos, P.M. 2004. Geochronological
evidence for pervasive Miocene weathering,
Minas Gerais, Brazil. Earth Surface Processes and
Landforms, 29 (11): 1303-1320.
Carmo, I.O. & Vasconcelos, P.M. 2006. 40Ar/39Ar geochronology
constraints on late miocene weathering rates in Minas
Gerais, Brazil. Earth and Planetary Science Letters,
: 80-94.
Churchman, G.J. & Lowe, D.J. 2012. Alteration, formation
and occurrence of minerals in soils. In: HUANG,
P.M.; LI, Y. & SUMNER, M.E. (eds.). Handbook of
Soil Sciences. Properties and Processes. CRC Press,
Florida, p. 20.1-20.72.
Cogné, N.; Gallagher, K.; Cobbold, P.R.; Riccomini, C. &
Gautheron, C. 2012. Post-breakup tectonics in
southeast Brazil from thermochronological data and
combined inverse-forward thermal history modeling.
Journal of Geophysical Research, 117: 1-16.
Costa, M. 1991. Aspectos geológicos dos lateritos da Amazônia.
Revista Brasileira de Geociências, 21(2): 146-160.
Cunningham, D.; Alkmim, F.F. & Marshak, S. 1998. A structural
transect across the coastal mobile belt in the Brazilian
Highlands (latitude 20°S): the roots of a Precambrian
transpressional orogen. Precambrian Research, 92(3):
-275.
De Campos, C.M.; Mendes, J.C.; Ludka, I.P.; Medeiros, S.R.;
Moura, J.C. & Wallfass, C. 2004. A review of the
Brasiliano magmatism in southern Espírito Santo,
Brazil, with emphasis on post-collisional magmatism.
Journal of the Virtual Explorer, 17: 1-35.
De Putter, T.; Ruffet, G.; Yans, J. & Mees, F. 2015. The age
of supergene manganese deposits in Katanga and its
implications for the Neogene evolution of the African
Great Lakes Region. Ore Geology Reviews, 71:
-362.
Delvaux, D.; Moeys, R.; Stapel, G.; Petit, C.; Levi, K.;
Miroshnichenko, A.; Ruzhich, V. & San’kov, V. 1997.
Paleostress reconstructions and geodynamics of the
Baikal region, Central Asia, Part 2. Cenozoic rifting.
Tectonophysics, 282: 1-38.
Delvaux, D. & Sperner, B. 2003. Stress tensor inversion from
fault kinematic indicators and focal mechanism data:
the TENSOR program. In: NIEUWLAND, D.A.
(ed.), New Insights into Structural Interpretation and
Modelling, Special Publication of the Geological
Society of London, 212, p. 75-100.
Deng, X.D. & Li, J.W. 2013. 40Ar/39Ar dating of cryptomelane
from the Baye manganese deposit, SW Yunnan,
China: implications for growth rate of supergene
Mn-oxide veins. Science China: Earth Sciences,
(10): 1654-1663.
Dunn, P.J.; Leavens, P.B.; Norberg, J.A. & Ramik, R.A.
Bannisterite: new chemical data and empirical
fomrulae. American Mineralogist, 66: 1063-1067.
ERSDAC. 2013. Earth Remote Sensing Data Analysis Center
(ASTER GDEM). Available in: http://gdem.ersdac.
jspacesystems.or.jp. Accessed 10 set 2013.
Faulkner, D.R.; Jackson, C.A.L.; Lunn, R.J.; Schlische, R.W.;
Shipton, Z.K.; Wibberley, C.A.J. & Withjack, M.O.
A review of recent developments concerning
the structure, mechanics and fluid flow properties of
fault zones. Journal of Structural Geology, 32(11):
-1575.
Féboli, W. 1993. Programa Levantamentos Geológicos
Básicos: Folha Piúma (SF. 24-V-A-VI,), Estado do
Espírito Santo, escala 1:100.000. Brasília: DNPM/
CPRM, 144 p.
Frohlich, C. 1992. Triangle diagrams: ternary graphs to
display similarity and diversity of earthquake focal
mechanisms. Physics of the Earth and Planetary
Interiors, 75: 193-198.
Fuck, R.A.; Brito-Neves, B.B. & Schobbenhaus, C. 2008.
Rodinia descendants in South America. Precambrian
Research, 160(1-2): 108-126.
Gatto, L.C.S.; Ramos, V.L.S.; Nunes, B.T.A.; Mamede, L.;
Góes, M.H.B.; Mauro, C.A.; Alvarenga, S.M.;
Franco, E.M.S.; Quirico, A.F. & Neves, L.B. 1983.
Geomorfologia. In: Moreira, H.F. (ed.). Projeto
RADAMBRASIL - Levantamento de Recursos
Naturais: Folhas SF-23/24, Rio de Janeiro/Vitória. 32,
p 305-384.
GEBCO. 2020. General Bathymetric Chart of the Oceans.
Available in: https://www.gebco.net/data_and_
products/gridded_bathymetry_data. Accessed 25 apr
GEOBASES. 2002. Sistema Integrado de Bases Geoespaciais
do Estado do Espírito Santo. INCAPER. Available
in: http://www.geobases.es.gov.br/. Accessed 28 ago
Grohmann, C.H.; Campanha, G.A.C. & Soares Junior, A.V.
OpenStereo: um programa Livre e multiplataforma
para análise de dados estruturais. In: XIII SIMPÓSIO
NACIONAL DE ESTUDOS TECTÔNICOS.
Campinas, 2011. Paper, p. 26-28.
Hackspacher, P.C.; Ribeiro, L.F.B.; Ribeiro, M.C.S.; Fetter,
A.H.; Hadler Neto, J.C.; Tello, C.E.S. & Dantas,
E.L. 2004. Consolidation and break-up of the
South American Platform in Southeastern Brazil:
tectonothermal and denudation histories. Gondwana
Research, 7(1): 91-101.
Harman, R.; Gallagher, K.; Brown, R.; Raza, A. & Bizzi, L. 1998.
Accelerated denudation and tectonic/geomorphic
reactivation of the cratons of Northeastern Brazil
during the Late Cretaceous. Journal of Geophysical
Research, 103 (B11): 27091-27105.
Heilbron, M.; Pedrosa-Soares, A.C.; Neto, M.C.C.; Silva,
L.C.; Trow, R.A.J. & Janasi, V.A. 2004. A
Província Mantiqueira. In: MANTESSO-NETO,
V.; BARTORELLI, A.; CARNEIRO, C.D.R &
BRITO-NEVES, B.B. (eds.). Geologia do Continente
Sul-Americano: evolução da obra de Fernando Flávio
Marques de Almeida. São Paulo, Becca, p. 180-212.
Horn, A.H.; Faria, B.; Gardini, G.M.; Vasconcellos, L. &
Oliveira, M.R. 2007. Programa Geologia do Brasil:
Folha Espera Feliz (SE24-V-A-IV), relatório final,
escala 1:100.000. Belo Horizonte, UFMG/CPRM, 72
p.
Jelinek, A.R.; Chemale JR.F.; Van Der Beek, P.A.; Guadagnin,
F.; Cupertino, J.A. & Viana, A. 2014. Denudation
history and landscape evolution of the northern
East-Brazilian continental margin from apatite
fission-track thermochronology. Journal of South
American Earth Sciences, 54: 158-181.
Karl, M.; Glasmacher, U.A.; Kollenz, S.; Franco-Magalhaes,
A.O.B.; Stockli, D.F. & Hackspacher, P.C. 2013.
Evolution of the South Atlantic passive continental
margin in Southern Brazil derived from zircon
and apatite (U–Th–Sm)/He and fission-track data.
Tectonophysics, 604: 224-244.
Kurz, W.; Imber, J.; Wibberley, C.A.J.; Holdsworth, R.E. &
Collettini, C. 2008. The internal structure of fault
zones: fluid flow and mechanical properties. In:
WIBBERLEY, C.A.J.; KURZ, W.; IMBER, J.;
HOLDSWORTH, R.E. & COLLETTINI, C. (eds.)
The internal structure of fault zones: implications for
mechanical and fluid-flow properties. The Geological
Society, London, Special publication, 299, p. 1-3.
Lourenço, F.S.; Alkmim, F.F.; Araújo, M.N.C.; Romeiro,
M.A.T.; Matos, G.C. & Crósta, A.P. 2016. The
Piúma lineament, southern Espírito Santo: structural
expression and tectonic significance. Brazilian
Journal of Geology, 46(4): 531-546.
Meunier, A. 2005. Clays. Berlin, Springer, 406 p.
Modenesi-Gauttieri, M.C.; Toledo, M.C.M; Hiruma, S.T.;
Taioli, F. & Shimada, H. 2011. Deep weathering and
landscape evolution in a tropical plateau. Catena, 85:
-230.
Monteiro, H.S.; Vasconcelos, P.M.; Farley, K.A.; Spier, C.A.
& Mello, C.L. 2014. (U–Th)/He geochronology
of goethite and the origin and evolution of cangas.
Geochimica et Cosmochimica Acta, 131: 267-289.
Morais Neto, J.M.; Hegarty, K.A.; Karner, G.D. & Alkmim,
F.F. 2009. Timing and mechanisms for the generation
and modification of the anomalous topography of the
Borborema Province, northeastern Brazil. Marine and
Petroleum Geology, 26(7): 1070-1086.
Noce, C.M.; Pedrosa-Soares, A.C.; Silva, L.C. & Alkmim, F.F.
O embasamento arqueano e paleoproterozóico
do Orógeno Araçuaí. Geonomos, 15(1): 17-23.
Novo, T.A.; Noce, C.M.; Batista, G.A.P.; Quéméneur, J.J.G.;
Martins, B.S.; Santos, S.W.M.; Carneiro, G.A. &
Horn, A.H. 2014. Programa Geologia do Brasil:
Geologia e Recursos Minerais da Folha Manhumirim
(SF24-V-A-IV), Estados do Espírito Santo e Minas
Gerais, escala 1:100.000, Belo Horizonte, CPRM, 77
p.
Oberlin, A. & Couty, R. 1970. Conditions of kaolinite formation
during alteration of some silicates by water at 200°C.
Clays and Clay Minerals, 18: 347-356.
Pedrosa-Soares, A.C.; Campos, C.; Noce, C.M.; Silva, L.C.;
Roncato, J.; Novo, T.; Medeiros, S.; Castañeda,
C.; Queiroga, G.; Dantas, E.; Dussin, I. & Alkmim,
F.F. 2011. Late Neoproterozoic-Cambrian granitic
magmatism in the Araçuaí Orogen, the Eastern
Brazilian Pegmatite Province and related mineral
resources (SE Brazil). Journal of the Geological
Society of London, 350: 25-51.
Pedrosa-Soares, A.C.; Alkmim, F.F.; Tack, L.; Noce, C.M;
Babinski, M.; Silva, L.C. & Martins-Neto, M.A. 2008.
Similarities and differences between the Brazilian
and African counterparts of the Neoproterozoic
Araçuaí-West Congo Orogen. Journal of the
Geological Society of London, 294: 153-172.
Pedrosa-Soares, A.C.; Noce, C.M.; Alkmim, F.F.; Silva, L.C.;
Babinski, M.; Cordani, U. & Castañeda, C. 2007.
Orógeno Araçuaí: síntese do conhecimento 30 anos
após Almeida 1977. Geonomos, 15(1): 1-16.
Pedrosa-Soares, A.C.; Noce, C.M.; Wiedemann, C.M. & Pinto,
C.P. 2001. The Araçuaí-West-Congo Orogen in Brazil:
an overview of a confined orogen formed during
Gondwanaland assembly. Precambrian Research,
(1-4): 307-323.
Pedrosa-Soares, A.C. & Wiedemann-Leonardos, C.M. 2000.
Evolution of the Araçuaí Belt and its connection to
the Ribeira Belt, Eastern Brazil. In: CORDANI U.G.;
MILANI, E.J.; TOMAZ FILHO, A. & CAMPOS,
D.A. (eds.). Tectonic Evolution of South America. São
Paulo, Sociedade Brasileira de Geologia, p. 265-285.
Riccomini, C.; Peloggia, A.U.G.; Saloni, J.C.L.; Kohnke, M.W.
& Figueira, R.M. 1989. Neotectonic activity in the
Serra do Mar rift system (southeastern Brazil). Journal
of South America Earth Sciences, 2(2): 191-197.
Righi, D & Meunier, A. 1995. Origin of Clays by Rock
Weathering and Soil Formation. In: VELDE, B.
(ed.) Origin and mineralogy of clays. Clays and the
environment. Springer, Berlin, p. 43-161.
Romano, A.W. & Castañeda, C. 2006. A tectônica distensiva
pós-mesozoica no condicionamento dos depósitos de
bauxita da mata mineira. Geonomos, 14(1-2): 1-5.
Ross, J. 2011. Relevo brasileiro: uma nova proposta de
classificação. Revista do Departamento de Geografia,
: 25-39.
Salvador, E.D. & Riccomini, C. 1995. Neotectônica da região
do alto estrutural de Queluz (SP-RJ, Brasil). Revista
Brasileira de Geociências, 25(3): 151-164.
Santos, M. & Ladeira, F.S.B. 2006. Tectonismo em perfis de
alteração da Serra de Itaqueri (SP): Análise através
de indicadores cinemáticos de falhas. Geociências,
(1): 135-149.
Scheinost, A.C. 2004. Metal Oxides. In: HILLEL, D (ed.).
Encyclopedia of Soils in the Environment. Elsevier, 2,
p. 428-438.
Shuster, D.L.; Farley, K.A.; Vasconcelos, P.M.; Balco, G.;
Monteiro, H.S.; Waltenberg, K. & Stone, J.O. 2012.
Cosmogenic 3
He in hematite and goethite from
Brazilian “canga” duricrust demonstrates the extreme
stability of these surfaces. Earth and Planetary
Science Letters, 329-330: 41-50.
Silva, L.C.; Mcnaughton, N.J.; Armstrong, R.; Hartmann,
L.A. & Fletcher, I.R. 2005. The Neoproterozoic
Mantiqueira Province and its African connections:
a zircon-based U–Pb geochronologic subdivision
for the Brasiliano/Pan-African systems of orogens.
Precambrian Research, 136(3-4): 203-240.
Silva, M.A.; Camozzato, E.; Paes, V.J.C.; Junqueira, P.A.
& Ramgrab, G.E. Folha SF.24-Vitoria. 2004.
SCHOBBENHAUS, C.; GONÇALVES, J.H.;
SANTOS, J.O.S.; ABRAM, M.B.; LEÃO NETO, R.;
MATOS, G.M.M.; VIDOTTI, R.M.; RAMOS, M.A.B.
& JESUS, J.D.A. (eds.), 2004. Carta Geológica
do Brasil ao Milionésimo, Sistema de Informações
Geográficas. Programa Geologia do Brasil. Brasília,
CPRM.
Silva, T.P. & Mello, C.L. 2011. Reativações Neotectônicas na
Zona de Cisalhamento do Rio Paraíba do Sul (Sudeste
do Brasil). Geologia USP. Série Científica, 11(1):
-111.
Spier, C.A.; Vasconcelos, P.M. & Oliveira, S.M.B. 2006.
Ar/39Ar geochronological constraints on the
evolution of lateritic iron deposits in the Quadrilátero
Ferrífero, Minas Gerais, Brazil. Chemical Geology,
(1-2): 79-104.
Vasconcelos. P.M.; Becker, T.A; Renne, P.R & Brimhal, G.H.
Age and duration of weathering by 40K-40Ar and
Ar/39Ar analysis of potassium-manganese oxides.
Science, 258: 451-455.
Vasconcelos, P.M. & Carmo, I.O. 2018. Calibrating
denudation chronology through 40Ar/39Ar weathering
geochronology. Earth-Science Reviews, 179: 411-435.
Velde, B. & Meunier, A. 2008. The Origin of Clay Minerals in
Soils and Weathered Rocks. Berlim, Springer, 406 p.
Vieira, V.S. & Menezes, R.G. (org.). 2015. Geologia e
Recursos Minerais do Estado do Espírito Santo: texto
explicativo do mapa geológico e de recursos minerais,
escala 1:400.000. Belo Horizonte, CPRM, 289 p.
Vodyanitskii, Y.N.; Vasil’ev, A.A.; Lesovaya, S.N.; Sataev, E.F
& Sivtsov, A.V. 2004. Formation of Manganese Oxides
in Soils. Eurasian Soil Science, 37(6): 572-584.
Wiedemann, C.M.; Campos, C.M.; Medeiros, S.R.; Mendes,
J.C.; Ludka, I.P. & Moura, J.C. 2002. Architecture of
Late orogenic plutons in the Araçuaí-Ribeira Folded
Belt, Southeast Brazil. Gondwana Research, 19:
-399.
Zalán, P.V. & Oliveira, J.A.B. 2005. Origem e evolução do
Sistema de Riftes Cenozóicos do Sudeste do Brasil.
Boletim de Geociências da Petrobras,13(2): 269-300.
Zhang, Y.; Schaubs, P.M.; Zhao, C.; Ord, A. Hobbs, B.E.
& Barnicoat, A.C. 2008. Fault-related dilation,
permeability enhancement, fluid flow and mineral
precipitation patterns: numerical models. In:
WIBBERLEY, C.A.J.; KURZ, W.; IMBER, J.;
HOLDSWORTH, R.E. & COLLETTINI, C. (eds.).
The Internal Structure of Fault Zones: implications for
mechanical and fluid-flow properties. The Geological
Society, London, 299, p. 239-255.
Downloads
Published
Issue
Section
License
This journal is licensed under a Creative Commons — Attribution 4.0 International — CC BY 4.0, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.