Análise da Tropopausa Dinâmica: Estudo de Caso na América do Sul

Autores

  • André Becker Nunes Universidade Federal de Pelotas, Programa de Pós-Graduação em Meteorologia.
  • Vilson Dias de Avila Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Sensoriamento Remoto.

DOI:

https://doi.org/10.11137/2017_1_83_92

Palavras-chave:

vórtice ciclônico de altos níveis, Alta da Bolívia, ozônio, EPV

Resumo

Neste trabalho foi observada a relação da tropopausa dinâmica (TD) com as variáveis, obtidas das Reanálises do MERRA, que descreveram o ciclo de vida dos três principais sistemas meteorológicos que atuam em altos níveis sobre a América do Sul, a saber: a Alta da Bolívia (AB), os vórtices ciclônicos de altos níveis (VCAN) do Nordeste Brasileiro (NeB) e os VCAN extratropicais, os quais ocorreram simultaneamente em 01de fevereiro de 2005. As diferenças mais marcantes observadas entre os referidos sistemas foram que o VCAN extratropical apresentou o comportamento clássico com anomalia da TD pronunciada e com movimento subsidente a oeste e movimento ascendente a leste, enquanto o VCAN do NeB apresentou anomalia da TD menos profunda com algum movimento ascendente e ausência de movimento subsidente, enquanto a AB não apresentou anomalia da TD, embora apresente movimentos verticais ascendentes e subsidentes. Apesar do aprofundamento da TD no VCAN do NeB, não se observou tendência de concentração de O3, provavelmente devido à baixa concentração nos trópicos, ao contrário do VCAN extratropical, cuja anomalia de TD apresentou grande tendência de concentração de O3.

Referências

Avila, V.D.; Nunes, A.B. & Alves, R.C.M. 2016. Análise de um caso de ciclogênese explosiva ocorrido em 03/01/2014 no sul do oceano Atlântico. Revista Brasileira de Geografia Física, 9(4): 1088-1099.

Bithell, M,; Gray, L.J. & Cox, B.D. 1999. A three-dimensional view of the evolution of midlatitude stratospheric intrusions. Journal of the Atmospheric Sciences, 56: 673-688.

Bluestein, H.B. 1993. Synoptic-Dynamic Meteorology in Midlatitudes. Volume II: Observations and theory of weather systems. Oxford. Oxford University Press. 594p.

Cau, P.; Methven, J. & Hoskins, B. 2007. Origins of dry air in the tropics and subtropics. Journal of Climate, 20: 2745-2759.

Chen, T-C.; Weng, S-P. & Schubert, S. 1999. Maintenance of austral summertime upper-tropospheric circulation over tropical South America: The Bolivian High-Nordeste low system. Journal of the Atmospheric Sciences, 56: 2081-2100.

Cossetin, F.; Nunes, A.B. & Teixeira, M.S. 2016. Análise do movimento vertical sob duas configurações de altos níveis da troposfera. Ciência e Natura, 38: 484-490.

Danielsen, E.F. 1968. Stratospheric-Tropospheric exchange based on radioactivity, ozone and potential vorticity. Journal of the Atmospheric Sciences, 25:502-518.

DeMaria M. 1985. Linear response of a stratified tropical atmosphere to convective forcing. Journal of the Atmospheric Sciences, 42: 1944-1959.

Funatsu, N.M.; Gan, M.A. & Caetano, E. 2004. A case study of orographic cyclogenesis over South America. Atmósfera, 17: 91-113.

Gan, M.A. & Kousky, V.E. 1986. Vórtices ciclônicos da alta troposfera no oceano Atlântico Sul. Revista Brasileira de Meteorologia, 1: 19-28.

Hirschberg, P.A. & Fritsch, J.M. 1991. Tropopause undulations and the development of extratropical cyclones. Part I: Overview and observations from a cyclone event. Monthly Weather Review, 119: 496-517.

Hodges, K.I.; Lee, R.W. & Bengtsson, L. 2011. A comparison of extratropical cyclones in recent reanalyses ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25. Journal of Climate, 24: 4888-4906.

Hoskins, B.J.; McIntyre, M.E. & Robertson, A.W. 1985. On the use and significance of isentropic potential vorticity maps. Quarterly Journal of Royal Meteorological Society, 111: 877-946.

Kennedy, A.D.; Dong, X.; Xi, B.; Xie, S.; Zhang, Y. & Chen, J. 2011. A comparison of MERRA and NARR reanalyses with the DOE ARM SGP data. Journal of Climate, 24: 4541-4557.

Kousky, V.E. & Gan, M.A. 1981. Upper tropospheric cyclone vortices in the tropical South Atlantic. Tellus, 33: 538-551.

Lenters, J.D. & Cook, K.H. 1999. Summertime precipitation variability over South America: Role of the large-scale Circulation. Monthly Weather Review, 127: 409--431.

Mishra, S.K.; Rao, V.B. & Gan, M.A. 2001. Structure and evolution of the large-scale flow and an embedded upper-tropospheric cyclonic vortex over Northeast Brazil. Monthly Weather Review, 129: 1673-1688.

Newel, R.E. 1963. Transfer through the tropopause and within the stratosphere. Quarterly Journal of the Royal Meteorological Society, 89: 167-204.

Posselt, D.J.; Jongeward, A.R.; Hsu, C-Y.; Potter, G.L. 2012. Object-based evaluation of MERRA cloud physical properties and radiative fluxes during the 1998 El Niño-La Niña transition. Journal of Climate, 25: 7313-7327.

Quadro, M.F.L.; Silva Dias, M.A.; Herdies, D.L. & Gonçalves, L.G.G. 2012. Análise climatológica da precipitação e do transporte de umidade na região da ZCAS através da nova geração de reanálises. Revista Brasileira de Meteorologia, 27: 152-162.

Ramirez, M.C.V.; Kayano, M.T. & Ferreira, N.J. 1999. Statistical analysis of upper tropospheric vortices in the vicinity of northeast Brazil during the 1980--1989 period. Atmósfera, 12: 75--88.

Rao, V.B. & Bonatti, J.P. 1987. On the origen of upper tropospheric cyclonic vortices in the South Atlantic Ocean and abjoining Brazil during the summer. Meteorology and Atmospheric Physics, 37: 11-16.

Reed, R.J. 1955. A study of a characteristic type of upper-level frontogenesis. Journal of Meteorology, 12: 226-237.

Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.; Takacs, L.; Gi-Kong, K.; Bloom, S.; Chen, J.; Collins, D.; Conaty, A.; Silva, A.; Gu, W.; Joiner, J.; Koster, R.D.; Lucchesi, R.; Molod, A.; Owens, T.; Pawson, S.; Pegion, P.; Redder, C.R.; Reichle, R.; Robertson, F.R.; Ruddick, A.G.; Sienkiewicz, M. & Woollen, J. 2011. MERRA: NASA's Modern-Era Retrospective Analysis for Research and Applications. Journal of Climate, 24: 3624-3648.

Santurette, P. & Georgiev, C.G. 2005. Weather analysis and forecasting: Applying satellite water vapor imagery and potential vorticity analysis. Amsterdam. Academic Press. 179p.

Satyamurty, P.; Ferreira, C.C. & Gan, M.A. 1990. Cyclonic vortices over South America. Tellus, 42: 194-201.

Satyamurty, P.; Nobre, C.A. & Silva Dias, P.L. 1998. Meteorology of the tropics: South America. In: KAROLY, D.J. & VINCENT, D.G. (eds.). Meteorology of Southern Hemisphere. Meteorological Monographs, , 27(49), chapter 3A.

Shapiro, M.A. 1980. The turbulent mixing within tropopause folds as a mechanism for exchange of chemical constituents between the stratosphere and troposphere. Journal of the Atmospheric Sciences, 37: 994--1004.

Silva Dias, P.L.; Schubert, W.H. & DeMaria, M. 1983. Large-scale response of the tropical atmosphere to transient convection. Journal of the Atmospheric Sciences, 40: 2689--2707.

Singleton, A.T. & Reason, C.J.C. 2007. A numerical model study of an intense cutoff low pressure system over South Africa. Monthly Weather Review, 135: 1128-1150.

Sprenger, M.; Wernli, H. & Bourqui, M. 2007. Stratosphere-Troposphere Exchange and its relation to potential vorticity streamers and cutoffs near the extratropical tropopause. Journal of the Atmospheric Sciences, 64: 1587-1602.

Staley, D.O. 1960. Evaluation of potential-vorticity changes near the tropopause and the related vertical motions, vertical advection of vorticity, and transfer of radioactive debris from stratosphere to troposphere. Journal of Meteorology, 17: 591-620.

Storebo, P.B. 1960. The exchange of air between stratosphere and troposphere. Journal of Meteorology, 17: 547-553.

Uccellini, L.W.; Keyser, D.; Brill, K.F. & Wash, C.H. 1985. The President's Day Cyclone of 18-19 February 1979: Influence of upstream trough amplification and associated tropopause folding on rapid cyclogenesis. Monthly Weather Review, 113: 962-988.

Virji, H. 1981. A preliminary study of summertime tropospheric circulation patterns over South America estimated from cloud winds. Monthly Weather Review, 109: 599--610.

Wang, C-C & Rogers, J.C. 2001. A composite study of explosive cyclogenesis in different sectors of the North Atlantic. Part I: Cyclone structure and evolution. Monthly Weather Review, 129: 1481--1499.

Wei, J.; Dirmeyer, P.A.; Wisser, D.; Bosilovich, M.G. & Mocko, D.M. 2013. Where does the irrigation water go? An estimate of the contribution of irrigation to precipitation using MERRA. Journal of Hydrometeorology, 14: 275-289.

Downloads

Publicado

2018-07-12

Edição

Seção

Artigos