Using Smartphones as a Measurement Platform in Geoscience Applications

Autores

DOI:

https://doi.org/10.11137/1982-3908_2023_46_56179

Palavras-chave:

Smartphones, Sensors, Measurements.

Resumo

Most modern smartphones come with a variety of sensors. Among them are the gyroscope, accelerometer, magnetometer, GNSS (Global Navigation Satellite Systems) receiver, and from 2020, most modern devices are also coupled with a Lidar (Light Detection and Ranging) sensor. These specific sensors allow to acquire data that enables the location and spatial orientation of the smartphone in relation to other objects, and also measure them. For this, it is important to understand how the principle of operation of these sensors occurs, as well as the respective raw data obtained and how to use these data from the sensors to get measurements of the elements of the physical surface of the Earth. This article aims to present a state of the art about the working principle of these sensors and presents the raw data from them. In addition, this article seeks to present an initial test on the quality of the orientation sensor, based on the comparison between the data obtained from this sensor and a total station with high angular precision (1 second). It was noted the occurrence of a systematic error in the observations of the horizontal directions, and an average discrepancy of 5.20° between the observations of the vertical angle. The use of sensors attached to smartphones can support in several activities of geoscience application, such as carrying out a prior survey of a given area of study, aiming to do a pre-analysis of geodetic networks, to carry out measurements of angles and distances for applications in terrain measurements, or even to assist the Geographic Information System (GIS) development.

Referências

Aggrey, J., Bisnath, S., Naciri, N., Shinghal G. & Yang, S. 2020, 'Multi-GNSS precise point positioning with next-generation smartphone measurements', Journal of Spatial Science, vol. 65, no. 1, pp. 79-98, DOI:10.1080/14498596.2019.1664944.

Andrejašic, M. 2008, 'Mems accelerometers', Seminar, University of Ljubljana, Ljubljana, viewed 28 November 2022, <https://faculty.uml.edu/xwang/16.541/2010/MEMS_accelerometers.pdf>.

Android 2022, Visão geral dos sensores, viewed 2 July 2022, <https://developer.android.com/guide/topics/sensors/sensors_overview?hl=pt-br>.

Aravena, C.A.A. 2018, 'Desenvolvimento de aplicação para posicionamento indoor por meio das redes wifi em ambientes internos', Master Thesis, Universidade Federal do Paraná, Curitiba, viewed 2 July 2022, <https://hdl.handle.net/1884/60080>.

Aroeira, C. 2021, Types of Accelerometers, viewed 28 November 2022, <https://www.dmc.pt/en/tipos-de-acelerometros>.

Crestani, T. 2015, 'Desenvolvimento de API para rastreamento híbrido de dispositivos móveis em ambientes internos', Undergraduate Thesis, Instituto Federal Catarinense, Videira.

Conti, G., Ribeiro, S.R.A. & Dias, A.H. 2015, 'Arquitetura de um sistema de informação geográfica mobile para coleta de dados geográficos baseados em conceitos de cloud computing e banco de dados NoSQL', X Congresso Brasileiro de Agroinformática, 21-23 October, viewed 28 November 2022, <https://www.researchgate.net/publication/324482003_Arquitetura_de_um_sistema_de_informacao_geografica_mobile_para_coleta_de_dados_geograficos_baseados_em_conceitos_de_cloud_computing_e_banco_de_dados_NoSQL>.

Constantino, D., Vozza, G., Pepe, M. & Alfio, V.S. 2022, 'Smartphone LiDAR Technologies for Surveying and Reality Modelling in Urban Scenarios: Evaluation Methods, Performance and Challenges', Applied System Innovation, vol. 5, no. 4, 63, DOI:10.3390/asi5040063.

Daponte, P., De Vito, L., Picariello, F. & Riccio, M. 2013, 'State of the art and future developments of measurement applications on smartphones', Measurement, vol. 46, no. 9, pp. 3291-307, DOI:10.1016/j.measurement.2013.05.006.

D'Elia, M.G., Giudice, A., Graditi, G. & Paciello, V. 2013 'Measurement uncertainty on smart phone', IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications, pp. 144-9, DOI:10.1109/CIVEMSA.2013.6617411.

Descamps-Vila, L., Pérez, A & Conesa, J. 2013, 'Integración de un sistema de posicionamiento Indoor en aplicaciones SIG para dispositivo movil', VII Jornada de SIG libre, viewed 25 September 2022, <https://dugi-doc.udg.edu/bitstream/handle/10256/7651/29Art-Integracion.pdf?sequence=1>.

Diggelen, F.V. & Khider, M. 2018, GNSS Analysis Tools from Google, Inside GNSS, viewed 13 December 2022, <https://insidegnss.com/gnss-analysis-tools-from-google>.

Geekfactory 2022, Geek Factory, viewed 10 August 2022, <https://www.geekfactory.mx/>.

Fux, S. 2008, 'Development of a planar low-cost Inertial Measurement Unit for UAVs and MAVs', Master Thesis, Swiss Federal Institute of Technology Zurich, Zurich.

Galaxy S10 teardown 2022, Samsung Galaxy S0 teardown, viewed 04 October 2022, <https://www.chiprebel.com/galaxy-s10-teardown/>.

Grewal, M. & Andrews, A. 2010, 'How good is your gyro', IEEE Control Systems Magazine, vol. 30, no. 1, pp. 12-86, DOI:10.1109/MCS.2009.935122.

Gomes, A. 2019, 'Avaliação da qualidade posicional de um sensor gnss de dupla frequência presente em um smartphone sob diferentes cenários e métodos de posicionamento', Master Thesis, Universidade Federal do Paraná, Curitiba, viewed 4 October 2022, <https://hdl.handle.net/1884/66320>.

Hwang, J., Yun, H., Suh, Y., Cho, J. & Lee, D. 2012, 'Development of an RTK-GPS positioning application with an improved position error model for smartphones', Sensors, vol. 12, no. 10, pp. 12988-300, DOI:10.3390/s121012988.

IDC 2020, Smartphone Market Share - OS Data Overview, viewed 15 May 2020, <https://www.idc.com/promo/smartphone-market-share/os>.

Kuhlmann, T., Garaizar, P. & Reips, U. 2021, 'Smartphone sensor accuracy varies from device to device in mobile research: the case of spatial orientation', Behavior Research Methods, vol. 53, no. 1, pp. 22-33, DOI:10.3758/s13428-020-01404-5.

Meneguzzi, L., Treis, R.F. & Cendron, M.M. 2016, 'Utilização de giroscópio e acelerômetro para identificação de movimentação em ambientes tridimensionais', V Feira de iniciação científica e extensão, 15-16 September, pp. 1-9, viewed 4 October 2022, <http://videira.ifc.edu.br/fice/wp-content/uploads/sites/27/2016/09/10-Artigo-UTILIZA%C3%87%C3%83O-DE-GIROSC%C3%93PIO-E.pdf >.

MIT 2020, MIT app inventor, viewed 10 November 2020, <http://appinventor.mit.edu>.

Odenwald, S. 2019, 'Smartphone sensors for citizen science applications: Radioactivity and magnetism', Citizen Science: Theory and Practice, vol. 4, no. 1, 18, DOI:10.5334/cstp.158.

Oh, J. & Kim, M. 2020, 'Method to determine initial aiming azimuth accuracy using acceleration, gyroscope, and geomagnetic sensors', ICT Express, vol. 6, no. 2, pp. 117-20, DOI:10.1016/j.icte.2019.10.004.

Oliveira, A.L., Vianna, L.S., Nascimento, B.R., Vita Neto, M.L. & Santos, M.G.A. 2014, 'Um estudo sobre o sistema operacional Android', Revista de trabalhos acadêmicos-campus Niterói, no. 7, pp. 1-11, viewed 10 November 2022, <http://revista.universo.edu.br/index.php?journal=1reta2&page=article&op=view&path%5B%5D=1182&path%5B%5D=886>.

Passaro, V.M.N., Cuccovillo, A., Vaiani, L., De Carlo, M. & Campanella, C.E. 2017, 'Gyroscope technology and applications: a review in the industrial perspective', Sensors, vol. 17, no. 10, pp. 2284-317, DOI:10.3390/s17102284.

Peres, F.F.F., Scheer, S., Faria, É.F. & Vian, D. 2015, 'Realidade aumentada para o acesso à instrumentação da barragem de Itaipu', XXX Seminário Nacional de Grandes Barragens, 12-14 May, Foz do Iguaçu, pp. 1-9, viewed 15 July 2022, <https://docplayer.com.br/2200630-Realidade-aumentada-para-o-acesso-a-instrumentacao-da-barragem-de-itaipu.html>.

Qazizada, M.E. & Pivarčiová, E. 2016, 'Mobile robot controlling possibilities of inertial navigation system', Procedia Engineering, vol. 149, pp. 404-13, DOI:10.1016/j.proeng.2016.06.685.

Regueiro, C.S. 2014, 'Error en el posicionamiento indoor en dispositivos móviles', Undergraduate Thesis, Universitat Oberta de Catalunya, Catalunya, viewed 15 July 2022, <http://hdl.handle.net/10609/34081>.

Wikidata 2022, Resonator, viewed 28 November 2022, <https://www.wikidata.org/wiki/Q349669>.

Riquelme, A., Tomás, R., Cano, M., Pastor, J.L. & Jordá-Bordehore, L. 2021, 'Extraction of discontinuity sets of rocky slopes using IPhone-12 Derived 3DPC and Comparison to TLS and SfM Datasets', IOP Conference Series: Earth and Environmental Science, vol. 833, no. 1, 012056, DOI:10.1088/1755-1315/833/1/012056.

Sampaio, L.F., Ito, A.L.B., Veiga, L.A.K., Alves, S.S.O., Carvajal, F.A.R. & Medeiros, L.I.B. 2022, 'Feasibility of using data from sensors embedded in smartphones to measure angles and distances', Revista Brasileira de Cartografia, vol. 74, no. 4, pp. 805-18, DOI:10.14393/rbcv74n4-65814.

Shala, U. & Rodriguez, A. 2011, 'Indoor Positioning using Sensor- fusion in Android Devices', Master Thesis, Kristianstad University, Sweden, viewed 4 October 2022, <http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A475619&dswid=-6119>.

Spreafico, A., Chiabrando, F., Losè, L.T. & Tonolo, F.G. 2021, 'The Ipad Pro Built-In LIDAR sensor: 3d rapid mapping tests and quality assessment', International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 43, pp. 63-9, DOI:10.5194/isprs-archives-XLIII-B1-2021-63-2021.

Stuhler, J. 2022, 'Utilização de MEMS ((Micro-Electro-Mechanical Systems–sistemas microeletromecânico) para aplicações de circuitos de baixo custo de movimentação e sensoriamento', Metodologias e Aprendizado, vol. 5, pp. 82-91, DOI:10.21166/metapre.v5i.2696.

UFPR Electric / Sensors Operating Principle 2022, Acelerômetros, viewed 4 October 2022, <http://www.eletrica.ufpr.br/edu/Sensores/1999/joao/index.htm>.

Weinberg, H. 2011, 'Gyro mechanical performance: the most important parameter', Analog Devices, pp. 1-5, viewed 26 October 2022, <https://www.analog.com/en/technical-articles/gyro-mechanical-performance.html#:~:text=The%20most%20significant%20are%20usually,(or%20g2%20sensitivity)>.

Watson, J. 2016, Mems gyroscope provides precision inertial sensing in harsh, high temperature environments, viewed 8 May 2021, <https://www.analog.com/media/en/technical-documentation/tech-articles/MEMS-Gyroscope-Provides-Precision-Inertialensing-in-Harsh-High-Temps.pdf>.

Xia, D., Yu, C. & Kong, L. 2014, 'The development of micromachined gyroscope structure and circuitry technology', Sensors, vol. 14, no. 1, pp. 1394-473, DOI:10.3390/s140101394.

Yoshida, J. 2020, Breaking Down iPad Pro 11’s LiDAR Scanner, viewed 28 September 2022, <https://www.eetimes.com/breaking-down-ipad-pro-11s-lidar-scanner>.

Downloads

Publicado

2023-07-10

Edição

Seção

Geografia