Analysis of the Correlation Between Cases and Deaths of COVID-19 and Atmospheric Pollution (PM2.5) in Brazil
DOI:
https://doi.org/10.11137/1982-3908_2024_47_56526Palavras-chave:
Coronavirus, Fecal-oral transmission, Air pollutionResumo
The main route of the spread of novel coronavirus occurs through direct close contact with infected persons and with surfaces containing the virus. Breathing and speech also release smaller particles which remain in the air longer and can settle in particulate matter dispersed in the atmosphere and reach long distances, becoming a secondary source of virus transmission. Considering that Brazil has been recording concentrations of particulate matter above the value recommended by the World Health Organization, and the high numbers of deaths in COVID-19. In this study, the correlation between the concentration of PM2.5 and the number of occurrences of COVID-19 and daily deaths in the cities of the states of Acre and São Paulo were investigated. The results showed that there was a correlation in three of the twenty analyzes carried out with a confidence interval of 95%, being that the correlation coefficients were
weak. Thus, it was not possible to assert a correlation and causality between the particulate material and the number of records of cases
and deaths in COVID-19. It is noteworthy that other variables directly related to the transmission and proliferation of the virus, such as social distance and the use of masks, have been neglected in Brazil since the beginning of the pandemic. Although there is no proof of virus transmissibility through PM2.5, they can make the population more susceptible to contract the virus and die, as long-term exposure to these pollutants weakens the immune system, making the body difficult to cope with infectious agents.
Referências
Altuwayjiri, A., Soleimanian, E., Moroni, S., Palomba, P., Borgini, A., Marco, C., Ruprecht, A. & Sioutas, C. 2021, ‘The impact of stay-home policies during Coronavirus-19 pandemic on the chemical and toxicological characteristics of ambient PM2.5 in the metropolitan area of Milan, Italy’, Science of The Total Environment, vol. 758, 143582, DOI: 10.1016/j.scitotenv.2020.143582.
Andrade Filho, V.S.D., Artaxo, P., Hacon, S., Carmo, C.N.D. & Cirino, G. 2013, ‘Aerossóis de queimadas e doenças respiratórias em crianças, Manaus, Brasil’, Revista de Saúde Pública, vol. 47, pp. 239-247, DOI: 10.1590/S0034-8910.2013047004011.
Andrade, M.F., Kumar, P., Freitas, E.F., Ynoue, R.Y., Martins, J., Martins, L.D., Nogueira, T., Perez-Martinez, P., Miranda, R. M., Albuquerque, T., Gonçalves, F.L.T., Oyama, B. & Zhang, Y. 2017, ‘Air quality in the megacity of São Paulo: Evolution over the last 30 years and future perspectives’, Atmospheric environment, vol. 159, pp. 66-82, DOI: 10.1016/j.atmosenv.2017.03.051.
Asadi, S., Bouvier, N., Wexler, A.S. & Ristenpart, W. D. 2020, ‘The coronavirus pandemic and aerosols: Does COVID-19 transmit via expiratory particles?’ Aerosol Science and technology, vol. 54, pp. 635-638, DOI: 10.1080/02786826.2020.1749229.
Auler, A.C., Cássaro, F.A.M., Da Silva, V.O. & Pires, L. F. 2020, ‘Evidence that high temperatures and intermediate relative humidity might favor the spread of COVID-19 in tropical climate: A case study for the most affected Brazilian cities’, Science of The Total Environment, vol. 729, 139090, DOI: 10.1016/j.scitotenv.2020.139090.
Bombardi, M.L. & Nepomuceno, P.L.M. 2020, ‘Covid-19, desigualdade social e tragédia no Brasil’. Le Monde diplomatique Brasil (Online), viewed 5 July 2020, <https://diplomatique.org.br/covid-19-desigualdade-social-e-tragedia-no-brasil/>.
Bontempi, E. 2020, ‘First data analysis about possible COVID-19 virus airborne diffusion due to air particulate matter (PM): The case of Lombardy (Italy)’, Environmental Research, vol. 186, 109639, DOI: 10.1016/j.envres.2020.109639.
Booth, T.F., Kournikakis, B., Bastien, N., Ho, J., Kobasa, D., Stadnyk, L., Li, Y., Spence, M., Paton, S., Henry, B., Mederski, B., White, D., Low, D., McGeer, A., Simor, A., Vearncombe, M., Downey, J., Jamieson, F., Tang, P. & Plummer, F. 2005, ‘Detection of Airborne Severe Acute Respiratory Syndrome (SARS) Coronavirus and Environmental Contamination in SARS Outbreak Units’, The Journal of Infectious Diseases, vol. 191, pp. 1472-1477, DOI: 10.1086/429634.
Brasil 2020. ‘COVID-19 no Brasil’, viewed 5 July 2020, <https://covid.saude.gov.br/>.
Brasil 2019, ‘RESOLUÇÃO Nº 491, DE 19 DE NOVEMBRO DE 2018’, viewed 26 de october 2021, <https://www.gov.br/mma/pt-br/assuntos/noticias/conama-aprova-prazos-para-novos-padroes-de-qualidade-do ar/copy_of_ApresentaonoConamaAdalbertoMaluf.pdf>.
Chen, H., Kwong, J.C., Copes, R., Tu, K., Villeneuve, P.J., van Donkelaar, A., Hystad, P., Martin, R.V., Murray, B.J., Jessiman B., Wilton, A.S., Kopp, A. & Burnett, R.T. 2017, ‘Living near major roads and the incidence of dementia, Parkinson’s disease, and multiple sclerosis: A population-based cohort study’, The Lancet, vol. 389, no. 10070, pp. 718-726.
Chen, K., Wang, M., Kinney, P.L. & Anastas, P.T. 2020, ‘Reduction in air pollution and attributable mortality due to COVID-19 lockdown – Authors’ reply’, The Lancet Planetary Health, vol. 4, no. 7, e269, , DOI: 10.1016/S2542-5196(20)30149-2.
Chennakesavulu, K. & Reddy, G. 2020, ‘The effect of latitude and PM2.5 on spreading of SARS-CoV-2 in tropical and temperate zone countries’, Environmental Pollution, vol. 266, 115176, DOI: 10.1016/j.envpol.2020.115176.
Corá, B., Leirião, L.F.L. & Miraglia, S.G.E.K. 2020, ‘Impacto da poluição do ar na saúde pública em municípios com elevada industrialização no estado de São Paulo’, Brazilian Journal of Environmental Sciences (Online), vol. 55, no. 4, pp. 498-509.
Cui, Y., Zhang, Z.F., Froines, J., Zhao, J., Wang, H. & Yu, S.Z. 2003, ‘Detels, R. Air pollution and case fatality of SARS in the People’s Republic of China: An ecologic study’, Environmental Health, vol. 2, pp. 1-5, DOI: 10.1186/1476-069X-2-1.
Dbouk, T., & Drikakis, D. 2020, ‘Weather impact on airborne coronavirus survival’, Physical of Fluids, vol. 32, 093312, DOI: 10.1063/5.0024272.
Doremalen, N., Morris, D.H., Holbrook, M., Gamble, A., WIlliamson, B.N., Tamin A., Smith, J.O. & Wit, E. 2020, ‘Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1’, The New England Journal of Medicine, DOI: 10.1056/NEJMc2004973.
Edwards, L., Rutter, G., Iverson, L., Wilson, L., Chadha, T.S., Wilkinson, P. & Milojevic, A. 2021, ‘Personal exposure monitoring of PM2. 5 among US diplomats in Kathmandu during the COVID-19 lockdown, March to June 2020’, Science of The Total Environment, vol. 772, 14483, DOI: 10.1016/j.scitotenv.2020.144836.
Fajersztajn, L., Veras, M., Barroso, L.V. & Saldiva, P. 2013, ‘Air pollution: A potentially modifiable risk factor for lung cancer’, Nature Reviews Cancer, vol. 13, no. 9, pp. 674-678, DOI: 10.1038/nrc3572.
Feng, C., Li, J., Sun, W., Zhang, Y. & Wang, Q. 2016, ‘Impact of ambient fine particulate matter (PM2.5) exposure on the risk of influenza-like-illness: A time-series analysis in Beijing, China’, Environmental Health: A Global Access Science Source, vol. 15, no. 1, pp. 1-12, DOI: 10.1186/s12940-016-0115-2.
Gharibvand, L., Shavlik, D., Ghamsary, M., Beeson, W.L., Soret, S., Knutsen, R. & Knutsen, S.F. 2016, ‘The association between ambient fine particulate air pollution and lung cancer incidence: Results from the AHSMOG-2 study’, Environmental Health Perspectives, vol. 125, no. 3, pp. 378-384, DOI: 10.1289/EHP124.
Gulia, S., Nagendra, S.M. ., Khare, M. & Khanna, I. 2015, ‘Urban air quality management – A review’, Atmospheric Pollution Research, vol. 6, no. 2, pp. 286-304, DOI: 10.5094/APR.2015.033.
IQAir 2020, ‘Explore your Air Quality’, viewed 5 July 2020, <https://www.iqair.com/>.
INPE – INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS (BRASIL) 2021, ‘Programa Queimadas’, viewed 26 march 2022, <https://terrabrasilis.dpi.inpe.br/>.
Islam, M. T. 2020, ‘Environmental Integrants Affecting the Spreadability of SARS-CoV-19’, Food Environ Virol, vol. 12, pp. 278-279, DOI: 10.1007/s12560-020-09435-z.
Kampf, G., Todt, D., Pfaender, S. & Steunmann, E. 2020, ‘Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents’, The Journal of Hospital Infection, vol. 104, pp. 246-251, DOI: 10.1016/j.jhin.2020.01.022.
Kumar, J.P., Lekhana, P., Tejaswi, M. & Chandrakala, S. 2021, ‘Effects of vehicular emissions on the urban environment-a state of the art’, Materials Today: Proceedings, vol. 45, pp. 6314-6320, DOI: 10.1016/j.matpr.2020.10.739.
Landrigan, P.J., Fuller, R., Acosta, N.J.R., Adeyi, O., Arnold, R., Basu, N., Baldé, A.B., Bertollini, R., Bose-O’Reilly, S., Boufford, J.I., Breysse, P.N., Chiles, T., Mahidol. C., Coll-Seck, A. M., Cropper, M.L., Fobil, J., Fuster, V., Greenstone, M., Haines, A. & Zhong, M. 2018, ‘The Lancet Commission on pollution and health’, The Lancet, vol. 391, no. 10119, pp. 462-512, DOI: 10.1016/S0140-6736(17)32345-0.
Li, Q., Xuhua, G., Peng, W., Xiaoye, W., Lei, Z., Yeqing, T., Ruiqi, R., Kathy, S.M.L., Eric, H.Y.L., Jessica, Y.W., Xuesen, X., Nijuan, X., Yang, W., Chao, L., Qi, C., Dan, L., Tian, L., Jing, Z., Man, L., Wenxiao, T., Chuding, C., Lianmei, J., Rui, Y., Qi, W., Suhua, Z., Rui, W., Hui, L., Yinbo, L., Yuan, L., Ge, S., Huan, L., Zhongfa, T., Yang, Y., Zhiqiang, D., Boxi, L., Zhitao, M., Yanping, Z., Guoqing, S., Tommy, T.Y.L., Joseph, T.W., George, F., Gao, D.P., Benjamin, J.C., Bo, Y., Gabriel, M.L., & Zijian, F. 2020. ‘Early transmission dynamics in Wuhan, China, of novel coronavirus – infected pneumonia’, New England Journal of Medicine, vol. 382, no. 13, pp. 1199-1207, DOI: 10.1056/NEJMOa2001316.
Lim, C.C, Hayes, R.B., Ahn, J., Shao, Y., Silverman, D.T., Jones, R.R., Garcia, C. & Thurston, G.D. 2018, ‘Association between long-term exposure to ambient air pollution and diabetes mortality in the US’, Environmental Research, vol. 165, pp.330-336, DOI: 10.1016/j.envres.2018.04.011.
Meo, S.A., Abukhalaf, A.A., Alomar, A.A., Alessa, O.M., Sami, W. & Klonoff, D.C. 2021, ‘Effect of environmental pollutants PM2.5, carbon monoxide, and ozone on the incidence and mortality of SARS-COV-2 infection in ten wildfire affected counties in California’, Science of the Total Environment, vol. 757, 143948, DOI: 10.1016/j.scitotenv.2020.143948.
Morawska, L. & Cao, J. 2020, ‘Airborne transmission of SARS-CoV-2: The world should face the reality’, Environmeent International, vol. 139, 105730, DOI: 10.1016/j.envint.2020.105730.
Olsen, S., Chang, H.L., Cheung, T., Tang, A., Fisk, T.L., Ooi, S., Kuo, H.W., Jiang, D., Chen, K.T., Lando, J., Hsu, K.H. & Jinn, T. 2003, ‘Transmission of the Severe Acute Respiratory Syndrome on Aircraft’, The New England Journal of Medicine, vol. 349, pp. 2416-2422, DOI: 10.1056/NEJMoa031349.
Orellana, J.D.Y., Cunha, G.M.D., Marrero, L., Moreira, R.I., Leite, I.D.C. & Horta, B.L. 2021, ‘Excesso de mortes durante a pandemia de COVID-19: subnotificação e desigualdades regionais no Brasil’. Cadernos de Saúde Pública, vol. 37, e00259120, DOI: 10.1590/0102-311X00259120.
Prado, M.F.D., Antunes, B.B.D.P., Bastos, L.D.S.L., Peres, I.T., Silva, A.D.A.B.D., Dantas, L.F., Baião, F.A., Maçaira, P., Hamacher, S. & Bozza, F.A. 2020, ‘Análise da subnotificação de COVID-19 no Brasil, Revista Brasileira de Terapia Intensiva, vol. 32, pp. 224-228, DOI: 10.5935/0103-507X.20200030.
Prata, D.N., Rodrigues, W. & Bermejo, P.H. 2020, ‘Temperature significantly changes COVID-19 transmission in (sub)tropical cities of Brazil’, Science of the Total Environment, vol. 729, 138862, DOI: 10.1016/j.scitotenv.2020.138862.
Prather, K.A., Wang, C.C. & Schooley, R.T. 2020, ‘Reducing transmission of SARS-CoV-21’, Science, vol. 368, pp. 1422-1424, DOI: 10.1126/science.abc6197.
Tang, J.W. 2009, ‘The effect of environmental parameters on the survival of airborne infectious agents’, Journal of the Royal Society Interface, vol. 6, pp. 737-746, DOI: 10.1098/rsif.2009.0227.focus.
Wong, S., Lui, R. & Sung, J. 2020, ‘Covid‐19 and the digestive system’, Journal of Gastroenterology and Hepatology, vol. 35, pp. 744-748, DOI: 10.1111/jgh.15047.
World Health Organization 2021, ‘Results Report’, viewed 25 July 2022, <https://www.who.int/about/accountability/results/who-results-report-2020-2021>.
Xie, J. & Zhu, Y. 2020, ‘Association between ambient temperature and COVID-19 infection in 122 cities from China’, Science of the Total Environment, vol. 724, 138201, DOI: 10.1016/j.scitotenv.2020.138201.
Yu, I., Li, Y., Wong, T., Tam, W., Chan, A., Lee, J., Leung, D. & Ho, T. 2004, ‘Evidence of Airborne Transmission of the Severe Acute Respiratory Syndrome Virus’, The New England Journal of Medicine, vol. 350, pp. 1731-1739, DOI: 10.1056/NEJMoa032867.
Yang, W. & Marr, L.C. 2012, ‘Mechanisms by Which Ambient Humidity May Affect Viruses in Aerosols’, American Society for Microbiology Journals, vol. 78, pp. 6781-6788, DOI: 10.1128/AEM.01658-12.
Zhang, S., Guo, M., Wu, F., Xiong, N., Wang, Z., Duan, L., Chen, L., Ouyang, H. & Jin, Y. 2020, ‘Factors associated with asymptomatic infection in health-care workers with severe acute respiratory syndrome coronavirus infection in Wuhan, China: A multicenter retrospective cohort study’, Clinical Microbiology and Infection, vol. 26, pp. 1670-1675, DOI: 10.1016/j.cmi.2020.08.038.
Zoran, M.A., Savastru, R.S., Savastru, D.M. & Tautan, M.N. 2020, ‘Assessing the relationship between surface levels of PM2. 5 and PM10 particulate matter impact on COVID-19 in Milan, Italy’, Science of the total environment, vol. 738, 139825, DOI: 10.1016/j.scitotenv.2020.139825.
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2024 Anuário do Instituto de Geociências
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Os artigos publicados nesta revista se encontram sob a llicença Creative Commons — Atribuição 4.0 Internacional — CC BY 4.0, que permite o uso, distribuição e reprodução em qualquer meio, contanto que o trabalho original seja devidamente citado.