Simulação Numérica Regional para a Temperatura do Ar no Continente Antártico

Autores

DOI:

https://doi.org/10.11137/1982-3908_2021_44_36417

Palavras-chave:

Temperatura do ar, Modelo WRF, Região polar

Resumo

Este estudo investiga a temperatura do ar no continente Antártico usando o modelo WRF (Weather Research and Forecasting) versão 3.6.1. Para avaliar o desempenho do WRF são analisadas 29 estações meteorológicas, sendo 24 localizadas próximas à costa e 5 no interior do continente, para o período de 1999 a 2018. Em regiões de topografia complexa e de altitude acima de 1450 metros, o WRF apresentou dificuldade em estimar os valores das temperaturas máximas e mínimas. Observou-se uma superestimativa da temperatura mínima, possivelmente devido à dificuldade do WRF em estimar adequadamente a umidade da atmosfera.  A camada espessa de neve faz com que o modelo subestime o fluxo de calor do solo, deixando muita energia na superfície que causa um aumento das temperaturas simuladas. O ciclo da temperatura é razoavelmente simulado na maioria das estações, com correlações entre 0,61 a 0,87. Em geral, as simulações com o WRF concordam razoavelmente com as observações, com desvio padrão entre 0,7 e 1,3°C para as estações localizadas entre 180°W a 90°E. Enquanto na região entre 90°E e 180°E, os desvios variam entre 0,6 e 1,4°C. Os resultados mostram, em geral, que as simulações com o WRF podem ser adotadas para preencher a inexistência de dados observados.

Referências

Boer, G.; Chapman, W.; Kay, J.E.; Medeiros, B.; Shupe, M.D.; Vavrus, S. & Walsh, J. 2012. A characterization of the present-day Arctic atmosphere in CCSM4. Journal of Climate, 25(8): 2676-2695. https://doi.org/10.1175/JCLI-D-11-00228.1

Bromwich, D.H.; Hines, K.M. & Bai, L.S. 2009. Development and testing of Polar Weather Research and Forecasting model: 2. Arctic Ocean. Journal of Geophysical Research, 114(D08122): 1-22. https://doi.org/10.1029/2008JD010300

Bromwich, D.H. & Cassano, J.J. 2001. Meeting Summary: Antarctic Weather Forecasting Workshop. Bulletin of the American Meteorological Society, 82: 1409-1413.

Bromwich, D.H.; Otieno, F.O.; Hines, K.M.; Manning, K.W. & Shilo, E. 2013. Comprehensive evaluation of polar weather research and forecasting model performance in the Antarctica. Journal of Geophysical Research: Atmospheres, 118: 274-292. https://doi.org/10.1029/2012JD018139

Bromwich, D.H.; Wilson, A.B.; Bai, L.S.; Moore, G.W. K. & Bauer, P. 2016. A comparison of the regional Arctic System reanalysis and the global ERA-Interim Reanalysis for the Arctic. Quarterly Journal of the Royal Meteorological Society, 142: 644-658. https://doi.org/10.1002/qj.2527

Chen, F. & Dudhia, J. 2001. Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Monthly Weather Review, 129: 569-585. https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2

Comin, A.N. 2012. Sensibilidade às parametrizações físicas do WRF nas previsões dos parâmetros atmosféricos em Shetland do Sul e Deception. Programa de Pós-graduação em Meteorologia, Universidade Federal de Santa Maria, Dissertação de Mestrado, 72p.

Comin, A.N. & Acevedo, O.C. 2017. Numerical simulation of sea breeze convergence over Antarctic peninsula. Advances in Meteorology, 2017(ID7686540): 1-11. https://doi.org/10.1155/2017/7686540

Comin, A.N.; Schumacher, V.; Justino, F. & Fernández, A. 2018. Impact of Different Microphysical Parameterizations on Extreme Snowfall Events in the Southern Andes. Weather and Climate Extremes, 21: 65-75. https://doi.org/10.1016/j.wace.2018.07.001

Comin, A.N.; Souza, R.B.; Acevedo, O.C. & Anabor, V. 2016. Analysis of Weather Research and Forecasting (WRF) Model with Different Schemes Microphysics and Planetary Boundary Layer on the Island Deception, Antarctica. Revista Brasileira de Meteorologia, 3(4): 415-427. https://doi.org/10.1590/0102-778631231420150027

Comin, A.N.; Justino, F.; Pezzi, L.; Gurjão, C.D.; Shumacher, V.; Fernández, A. & Sutil, U.A. 2020. Extreme rainfall event in the Northeast coast of Brazil: a numerical sensitivity study. Meteorology and Atmospheric Physics, 2020: 1-22. https://doi.org/10.1007/s00703-020-00747-0

Chapman, W.L. & Walsh, J.E. 2007. Simulations of Arctic temperature and pressure by global coupled models. Journal of Climate, 20: 609-632. https://doi.org/10.1175/JCLI4026.1

Convey, P.; Bindschadler, R.; Prisco, G.; Fahrbach, E.; Gutt, J.; Hodgson, D.A.; Mayewski, P.A.; Summerhayes, C.P. & Consortium, A.C.C.E. 2009. Antarctica climate change and the environment. Antarctic Sciences, 21(6): 541-563. https://doi.org/10.1017/S0954102009990642

Deb, P.; Orr, A.; Hosking, J. S.; Phillips, T.; Turner, J.; Bannister, D.; Pope, J.O. & Colwell, S. 2016. An assessment of the Polar Weather Research and Forecast (WRF) model representation of near‐surface meteorological variables over West Antarctica. Journal of Geophysical Research: Atmospheres, 121: 1532-1548. https://doi.org/10.1002/2015JD024037

Dudhia, J. 1989. Numerical study of convection observed during the Winter Monsoon 661 Experiment using a mesoscale two-dimensional model. Journal of the Atmospheric Sciences, 46: 3077-3107. https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2

Guo, Z.; Bromwich, D.H. & Cassano, J.J. 2003. Evaluation of Polar MM5 simulations of Antarctic atmospheric circulation. Monthly Weather Review, 131: 384-411. https://doi.org/10.1175/1520-0493(2003)131<0384:EOPMSO>2.0.CO;2

Hines, K.M. & Bromwich, D.H. 2008. Development and Testing of Polar Weather Research and Forecasting (WRF) Model. Part I: Greenland Ice Sheet Meteorology. Monthly Weather Review, 136: 1971-1989. https://doi.org/10.1175/2007MWR2112.1

Hole, L.; Bello, A.; Roberts, T., Voss, P. & Vihma, T. 2016. Measurements by controlled meteorological balloons in coastal areas of Antarctica. Antarctic Science, 28(5): 387-394. https://doi.org/10.1017/S0954102016000213

Hong, S.-Y.; Dudhia, J. & Chen, S.-H. 2004. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Monthly Weather Review, 132: 103-120. https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2

Hong, S.Y.; Noh, Y. & Dudhia, J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review, 134(9): 2318-2341. https://doi.org/10.1175/MWR3199.1

Hong, S.Y.; Lee, Y.-H.; Ha, J.-C.; Kim, H.-W.; Ham, S.-J. & Dudhia, J. 2010. Evaluation of the WRF double-moment 6-class microphysics scheme for precipitating convection. Advances in Meteorology, 2010(ID707253): 1-11. https://doi.org/10.1155/2010/707253

Hudson, S.R. & Brandt, R.E. 2005. A Look at the Surface-Based Temperature Inversion on the Antarctic Plateau. Journal of Climate, 18: 1673-1696. https://doi.org/10.1175/JCLI3360.1

Janjic, Z.I. 2001. Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso model. NCEP Technical Report, 437: 1-61.

Jin, J. & Miller, N.L. 2007. Analysis of the impact of snow on daily weather variability in mountainous regions using MM5. Journal of Hydrometeorology, 8: 245-258. https://doi.org/10.1175/JHM565.1

Kain, J.S. 2004. The Kain–Fritsch Convective Parameterization: An Update. Journal of Applied Meteorology, 43: 170-181. https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2

Klemp, J.B. & Lilly, D.K. 1978. Numerical simulation of hydrostatic mountain waves. Journal of the Atmospheric Sciences, 35: 78-107. https://doi.org/10.1175/1520-0469(1978)035<0078:NSOHMW>2.0.CO;2

Lachlan-Cope, T.; Listowski, C. & O’Shea, S. 2017. The microphysics of clouds over the Antarctic Peninsula – Part 1: Observations. Atmospheric Chemistry and Physics, 16: 15605-15617. https://doi.org/10.5194/acp-16-15605-2016

Laine, V. 2008. Antarctica ice sheet and sea ice regional albedo and temperature change, 1981-2000, from AVHRR Polar Pathfinder data. Remote Sensing of Environment, 112: 646-653. https://doi.org/10.1016/j.rse.2007.06.005

Li, D.; Zeid, E.B.; Baeck, M.L.; Jessup, S. & Smith, J.A. 2013. Modeling Land Surface Processes and Heavy Rainfall in Urban Environments: Sensitivity to Urban Surface Representations. Journal of Hydrometeorology, 14: 1098-1118. https://doi.org/10.1175/JHM-D-12-0154.1

Listowski, C. & Lachlan-Cope, T. 2017. The microphysics of clouds over the Antarctic Peninsula – Part 2: modelling aspects with in Polar WRF. Atmospheric Chemistry and Physics, 17: 10195-10221. https://doi.org/10.5194/acp-17-10195-2017

Livneh, B.; Xia, Y.; Mitchell, K.E.; Ek, M.B. & Lettenmaier, D.P. 2010. Noah LSM snow model diagnostics and enhancements. Journal of Hydrometeorology, 11(3): 721-738. https://doi.org/10.1175/2009JHM1174.1

Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J. & Clough, S.A. 1997. Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research, 102: 16663-16682. https://doi.org/10.1029/97JD00237

Monaghan, A.J.; Bromwich, D.H.; Powers, J.G.; Manning, K.W. 2005. The climate of the McMurdo, Antarctica, region as represented by one year of forecasts from the Antarctic Mesoscale Prediction System. Journal of Climate, 18: 1174-1189. https://doi.org/10.1175/JCLI3336.1

Niu, G.U.; Yang, Z.L.; Kenneth, E.M.; Chen, F.; Michael, B.E.; Barlage, M.; Kumar, A.; Niyogi, D.; Rosero, E.; Tewari, M. & Xia, Y. 2011. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. Journal of Geophysical Research, 116(D12019):1-19. https://doi.org/10.1029/2010JD015139

Powers, J.G. 2007. Numerical Prediction of an Antarctica Severe Wind Event with the Weather Research and Forecasting (WRF) Model. Monthly Weather Review, 135: 3134-3157. https://doi.org/10.1175/MWR3459.1

Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W. & Powers, J.G. 2008. A description of the Advanced Research WRF Version 3. National Center for Atmospheric Research Technical Note. Boulder, USA, p. 1-113. (Series TN-475+STR). http://dx.doi.org/10.5065/D68S4MVH

Snively, D.V.; Gallus Jr. & W.A. 2014. Prediction of convective morphology in near-cloud-permitting WRF model simulations. Weather and Forecasting, 29: 130-149. https://doi.org/10.1175/WAF-D-13-00047.1

Stull, R.B. 1991. Static stability-An update. Bulletin of the American Meteorological Society, 72: 1521-1529. https://doi.org/10.1175/1520-0477(1991)072<1521:SSU>2.0.CO;2

Sultan, S.; Hui, L.; Riaz, M.; Babar, Z.A.; Renguang, W.; Ahmad, I.; Shad, M.A. & Aslam, C.M. 2016. Impact of land surface models on simulation of extreme rainfall events over upper 888 catchments of the River Indus. Pakistan Journal of Meteorology, 13: 39-49.

Tastula, E.-M. & Vihma, T. 2011. WRF model experiments on the Antarctica atmosphere in winter. Monthly Weather Review, 139: 1279-1291. https://doi.org/10.1175/2010MWR3478.1

Taylor, K.E. 2001. Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research, 106(D7): 7183-7192. https://doi.org/10.1029/2000JD900719

Turner, J.; Colwell, S.R.; Marshall, G.J.; Lachlan-Cope, T.A.; Carleton, A.M.; Jones, P.D.; Lagun, V.; Reid, P.A. & Iagovkina, S. 2005. Antarctic climate change during the last 50 Years. International Journal of Climatology, 25: 279- 294. https://doi.org/10.1002/joc.1130

Valkonen, T.; Vihma, T.; Johansson, M.M. & Launiainen, J. 2014. Atmosphere–sea ice interaction in early summer in the Antarctica: Evaluation and challenges of a regional atmospheric model. Quarterly Journal of the Royal Meteorological Society, 140: 1536-1551. https://doi.org/10.1002/qj.2237

Waugh, D.W. & Randel, W.J. 1999. Climatology of Artic and Antarctic polar vortices using elliptical diagnostics. Journal of the Atmospheric Sciences, 56: 1594-1613. https://doi.org/10.1175/1520-0469(1999)056<1594:COAAAP>2.0.CO;2

Wu, L. & Petty, G.W. 2010. Intercomparison of Bulk Microphysics Schemes in Model Simulations of Polar Lows. Monthly Weather Review, 138: 2211-2228. https://doi.org/10.1175/2010MWR3122.1

Yao, Y.; Huang, J.; Luo, Y. & Zhao, Z. 2016. An upgraded scheme of surface physics for Antarctic ice sheet and its implementation in the WRF. Science Bulletin, 61(7): 576-584. https://doi.org/10.1007/s11434-016-1029-7

Yver, C.E.; Graven, H.D.; Lucas, D.D.; Cameron-Smith, P.J.; Keeling, R.F. & Weiss, R.S. 2013. Evaluating transport in the WRF model along the California coast. Atmospheric Chemistry and Physics, 13: 1837-1852. https://doi.org/10.5194/acp-13-1837-2013

Zeng, X.M.; Wu, Z.H.; Song, S.; Xiong, S.Y.; Zheng, Y.Q.; Zhou, Z.G. & Liu, H.Q. 2012. Effects of different land-surface schemes on the simulation of a heavy rainfall event by WRF. Chinese Journal of Geophysics, 55: 394–408. https://doi.org/10.1002/cjg2.1734

Downloads

Publicado

2021-02-19

Edição

Seção

Meteorologia