Simulação Numérica Regional para a Temperatura do Ar no Continente Antártico
DOI:
https://doi.org/10.11137/1982-3908_2021_44_36417Palavras-chave:
Temperatura do ar, Modelo WRF, Região polarResumo
Este estudo investiga a temperatura do ar no continente Antártico usando o modelo WRF (Weather Research and Forecasting) versão 3.6.1. Para avaliar o desempenho do WRF são analisadas 29 estações meteorológicas, sendo 24 localizadas próximas à costa e 5 no interior do continente, para o período de 1999 a 2018. Em regiões de topografia complexa e de altitude acima de 1450 metros, o WRF apresentou dificuldade em estimar os valores das temperaturas máximas e mínimas. Observou-se uma superestimativa da temperatura mínima, possivelmente devido à dificuldade do WRF em estimar adequadamente a umidade da atmosfera. A camada espessa de neve faz com que o modelo subestime o fluxo de calor do solo, deixando muita energia na superfície que causa um aumento das temperaturas simuladas. O ciclo da temperatura é razoavelmente simulado na maioria das estações, com correlações entre 0,61 a 0,87. Em geral, as simulações com o WRF concordam razoavelmente com as observações, com desvio padrão entre 0,7 e 1,3°C para as estações localizadas entre 180°W a 90°E. Enquanto na região entre 90°E e 180°E, os desvios variam entre 0,6 e 1,4°C. Os resultados mostram, em geral, que as simulações com o WRF podem ser adotadas para preencher a inexistência de dados observados.
Referências
Boer, G.; Chapman, W.; Kay, J.E.; Medeiros, B.; Shupe, M.D.; Vavrus, S. & Walsh, J. 2012. A characterization of the present-day Arctic atmosphere in CCSM4. Journal of Climate, 25(8): 2676-2695. https://doi.org/10.1175/JCLI-D-11-00228.1
Bromwich, D.H.; Hines, K.M. & Bai, L.S. 2009. Development and testing of Polar Weather Research and Forecasting model: 2. Arctic Ocean. Journal of Geophysical Research, 114(D08122): 1-22. https://doi.org/10.1029/2008JD010300
Bromwich, D.H. & Cassano, J.J. 2001. Meeting Summary: Antarctic Weather Forecasting Workshop. Bulletin of the American Meteorological Society, 82: 1409-1413.
Bromwich, D.H.; Otieno, F.O.; Hines, K.M.; Manning, K.W. & Shilo, E. 2013. Comprehensive evaluation of polar weather research and forecasting model performance in the Antarctica. Journal of Geophysical Research: Atmospheres, 118: 274-292. https://doi.org/10.1029/2012JD018139
Bromwich, D.H.; Wilson, A.B.; Bai, L.S.; Moore, G.W. K. & Bauer, P. 2016. A comparison of the regional Arctic System reanalysis and the global ERA-Interim Reanalysis for the Arctic. Quarterly Journal of the Royal Meteorological Society, 142: 644-658. https://doi.org/10.1002/qj.2527
Chen, F. & Dudhia, J. 2001. Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Monthly Weather Review, 129: 569-585. https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
Comin, A.N. 2012. Sensibilidade às parametrizações físicas do WRF nas previsões dos parâmetros atmosféricos em Shetland do Sul e Deception. Programa de Pós-graduação em Meteorologia, Universidade Federal de Santa Maria, Dissertação de Mestrado, 72p.
Comin, A.N. & Acevedo, O.C. 2017. Numerical simulation of sea breeze convergence over Antarctic peninsula. Advances in Meteorology, 2017(ID7686540): 1-11. https://doi.org/10.1155/2017/7686540
Comin, A.N.; Schumacher, V.; Justino, F. & Fernández, A. 2018. Impact of Different Microphysical Parameterizations on Extreme Snowfall Events in the Southern Andes. Weather and Climate Extremes, 21: 65-75. https://doi.org/10.1016/j.wace.2018.07.001
Comin, A.N.; Souza, R.B.; Acevedo, O.C. & Anabor, V. 2016. Analysis of Weather Research and Forecasting (WRF) Model with Different Schemes Microphysics and Planetary Boundary Layer on the Island Deception, Antarctica. Revista Brasileira de Meteorologia, 3(4): 415-427. https://doi.org/10.1590/0102-778631231420150027
Comin, A.N.; Justino, F.; Pezzi, L.; Gurjão, C.D.; Shumacher, V.; Fernández, A. & Sutil, U.A. 2020. Extreme rainfall event in the Northeast coast of Brazil: a numerical sensitivity study. Meteorology and Atmospheric Physics, 2020: 1-22. https://doi.org/10.1007/s00703-020-00747-0
Chapman, W.L. & Walsh, J.E. 2007. Simulations of Arctic temperature and pressure by global coupled models. Journal of Climate, 20: 609-632. https://doi.org/10.1175/JCLI4026.1
Convey, P.; Bindschadler, R.; Prisco, G.; Fahrbach, E.; Gutt, J.; Hodgson, D.A.; Mayewski, P.A.; Summerhayes, C.P. & Consortium, A.C.C.E. 2009. Antarctica climate change and the environment. Antarctic Sciences, 21(6): 541-563. https://doi.org/10.1017/S0954102009990642
Deb, P.; Orr, A.; Hosking, J. S.; Phillips, T.; Turner, J.; Bannister, D.; Pope, J.O. & Colwell, S. 2016. An assessment of the Polar Weather Research and Forecast (WRF) model representation of near‐surface meteorological variables over West Antarctica. Journal of Geophysical Research: Atmospheres, 121: 1532-1548. https://doi.org/10.1002/2015JD024037
Dudhia, J. 1989. Numerical study of convection observed during the Winter Monsoon 661 Experiment using a mesoscale two-dimensional model. Journal of the Atmospheric Sciences, 46: 3077-3107. https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
Guo, Z.; Bromwich, D.H. & Cassano, J.J. 2003. Evaluation of Polar MM5 simulations of Antarctic atmospheric circulation. Monthly Weather Review, 131: 384-411. https://doi.org/10.1175/1520-0493(2003)131<0384:EOPMSO>2.0.CO;2
Hines, K.M. & Bromwich, D.H. 2008. Development and Testing of Polar Weather Research and Forecasting (WRF) Model. Part I: Greenland Ice Sheet Meteorology. Monthly Weather Review, 136: 1971-1989. https://doi.org/10.1175/2007MWR2112.1
Hole, L.; Bello, A.; Roberts, T., Voss, P. & Vihma, T. 2016. Measurements by controlled meteorological balloons in coastal areas of Antarctica. Antarctic Science, 28(5): 387-394. https://doi.org/10.1017/S0954102016000213
Hong, S.-Y.; Dudhia, J. & Chen, S.-H. 2004. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Monthly Weather Review, 132: 103-120. https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2
Hong, S.Y.; Noh, Y. & Dudhia, J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review, 134(9): 2318-2341. https://doi.org/10.1175/MWR3199.1
Hong, S.Y.; Lee, Y.-H.; Ha, J.-C.; Kim, H.-W.; Ham, S.-J. & Dudhia, J. 2010. Evaluation of the WRF double-moment 6-class microphysics scheme for precipitating convection. Advances in Meteorology, 2010(ID707253): 1-11. https://doi.org/10.1155/2010/707253
Hudson, S.R. & Brandt, R.E. 2005. A Look at the Surface-Based Temperature Inversion on the Antarctic Plateau. Journal of Climate, 18: 1673-1696. https://doi.org/10.1175/JCLI3360.1
Janjic, Z.I. 2001. Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso model. NCEP Technical Report, 437: 1-61.
Jin, J. & Miller, N.L. 2007. Analysis of the impact of snow on daily weather variability in mountainous regions using MM5. Journal of Hydrometeorology, 8: 245-258. https://doi.org/10.1175/JHM565.1
Kain, J.S. 2004. The Kain–Fritsch Convective Parameterization: An Update. Journal of Applied Meteorology, 43: 170-181. https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
Klemp, J.B. & Lilly, D.K. 1978. Numerical simulation of hydrostatic mountain waves. Journal of the Atmospheric Sciences, 35: 78-107. https://doi.org/10.1175/1520-0469(1978)035<0078:NSOHMW>2.0.CO;2
Lachlan-Cope, T.; Listowski, C. & O’Shea, S. 2017. The microphysics of clouds over the Antarctic Peninsula – Part 1: Observations. Atmospheric Chemistry and Physics, 16: 15605-15617. https://doi.org/10.5194/acp-16-15605-2016
Laine, V. 2008. Antarctica ice sheet and sea ice regional albedo and temperature change, 1981-2000, from AVHRR Polar Pathfinder data. Remote Sensing of Environment, 112: 646-653. https://doi.org/10.1016/j.rse.2007.06.005
Li, D.; Zeid, E.B.; Baeck, M.L.; Jessup, S. & Smith, J.A. 2013. Modeling Land Surface Processes and Heavy Rainfall in Urban Environments: Sensitivity to Urban Surface Representations. Journal of Hydrometeorology, 14: 1098-1118. https://doi.org/10.1175/JHM-D-12-0154.1
Listowski, C. & Lachlan-Cope, T. 2017. The microphysics of clouds over the Antarctic Peninsula – Part 2: modelling aspects with in Polar WRF. Atmospheric Chemistry and Physics, 17: 10195-10221. https://doi.org/10.5194/acp-17-10195-2017
Livneh, B.; Xia, Y.; Mitchell, K.E.; Ek, M.B. & Lettenmaier, D.P. 2010. Noah LSM snow model diagnostics and enhancements. Journal of Hydrometeorology, 11(3): 721-738. https://doi.org/10.1175/2009JHM1174.1
Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J. & Clough, S.A. 1997. Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research, 102: 16663-16682. https://doi.org/10.1029/97JD00237
Monaghan, A.J.; Bromwich, D.H.; Powers, J.G.; Manning, K.W. 2005. The climate of the McMurdo, Antarctica, region as represented by one year of forecasts from the Antarctic Mesoscale Prediction System. Journal of Climate, 18: 1174-1189. https://doi.org/10.1175/JCLI3336.1
Niu, G.U.; Yang, Z.L.; Kenneth, E.M.; Chen, F.; Michael, B.E.; Barlage, M.; Kumar, A.; Niyogi, D.; Rosero, E.; Tewari, M. & Xia, Y. 2011. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. Journal of Geophysical Research, 116(D12019):1-19. https://doi.org/10.1029/2010JD015139
Powers, J.G. 2007. Numerical Prediction of an Antarctica Severe Wind Event with the Weather Research and Forecasting (WRF) Model. Monthly Weather Review, 135: 3134-3157. https://doi.org/10.1175/MWR3459.1
Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W. & Powers, J.G. 2008. A description of the Advanced Research WRF Version 3. National Center for Atmospheric Research Technical Note. Boulder, USA, p. 1-113. (Series TN-475+STR). http://dx.doi.org/10.5065/D68S4MVH
Snively, D.V.; Gallus Jr. & W.A. 2014. Prediction of convective morphology in near-cloud-permitting WRF model simulations. Weather and Forecasting, 29: 130-149. https://doi.org/10.1175/WAF-D-13-00047.1
Stull, R.B. 1991. Static stability-An update. Bulletin of the American Meteorological Society, 72: 1521-1529. https://doi.org/10.1175/1520-0477(1991)072<1521:SSU>2.0.CO;2
Sultan, S.; Hui, L.; Riaz, M.; Babar, Z.A.; Renguang, W.; Ahmad, I.; Shad, M.A. & Aslam, C.M. 2016. Impact of land surface models on simulation of extreme rainfall events over upper 888 catchments of the River Indus. Pakistan Journal of Meteorology, 13: 39-49.
Tastula, E.-M. & Vihma, T. 2011. WRF model experiments on the Antarctica atmosphere in winter. Monthly Weather Review, 139: 1279-1291. https://doi.org/10.1175/2010MWR3478.1
Taylor, K.E. 2001. Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research, 106(D7): 7183-7192. https://doi.org/10.1029/2000JD900719
Turner, J.; Colwell, S.R.; Marshall, G.J.; Lachlan-Cope, T.A.; Carleton, A.M.; Jones, P.D.; Lagun, V.; Reid, P.A. & Iagovkina, S. 2005. Antarctic climate change during the last 50 Years. International Journal of Climatology, 25: 279- 294. https://doi.org/10.1002/joc.1130
Valkonen, T.; Vihma, T.; Johansson, M.M. & Launiainen, J. 2014. Atmosphere–sea ice interaction in early summer in the Antarctica: Evaluation and challenges of a regional atmospheric model. Quarterly Journal of the Royal Meteorological Society, 140: 1536-1551. https://doi.org/10.1002/qj.2237
Waugh, D.W. & Randel, W.J. 1999. Climatology of Artic and Antarctic polar vortices using elliptical diagnostics. Journal of the Atmospheric Sciences, 56: 1594-1613. https://doi.org/10.1175/1520-0469(1999)056<1594:COAAAP>2.0.CO;2
Wu, L. & Petty, G.W. 2010. Intercomparison of Bulk Microphysics Schemes in Model Simulations of Polar Lows. Monthly Weather Review, 138: 2211-2228. https://doi.org/10.1175/2010MWR3122.1
Yao, Y.; Huang, J.; Luo, Y. & Zhao, Z. 2016. An upgraded scheme of surface physics for Antarctic ice sheet and its implementation in the WRF. Science Bulletin, 61(7): 576-584. https://doi.org/10.1007/s11434-016-1029-7
Yver, C.E.; Graven, H.D.; Lucas, D.D.; Cameron-Smith, P.J.; Keeling, R.F. & Weiss, R.S. 2013. Evaluating transport in the WRF model along the California coast. Atmospheric Chemistry and Physics, 13: 1837-1852. https://doi.org/10.5194/acp-13-1837-2013
Zeng, X.M.; Wu, Z.H.; Song, S.; Xiong, S.Y.; Zheng, Y.Q.; Zhou, Z.G. & Liu, H.Q. 2012. Effects of different land-surface schemes on the simulation of a heavy rainfall event by WRF. Chinese Journal of Geophysics, 55: 394–408. https://doi.org/10.1002/cjg2.1734
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2021 Anuário do Instituto de Geociências

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Os artigos publicados nesta revista se encontram sob a llicença Creative Commons — Atribuição 4.0 Internacional — CC BY 4.0, que permite o uso, distribuição e reprodução em qualquer meio, contanto que o trabalho original seja devidamente citado.