Application of Visual MODFLOW to the Analysis of Boundary Conditions for a Phreatic Porous Aquifer Using Limited Available Information: A Case Study
DOI:
https://doi.org/10.11137/1982-3908_2021_44_39646Palavras-chave:
Groundwater Modeling, Hydrogeology, Itabira-MGResumo
The increasing water demand, especially in developing regions, continuously puts pressure on groundwater resources both quantitatively and qualitatively. Hydrogeological modeling is a tool used in planning and management of groundwater resources. The factors that interfere in groundwater flow dynamics can be determined by developing a conceptual model and they can be validated via a numerical model. The objective of the manuscript is the hydrogeological groundwater flow modeling of the phreatic porous aquifer of the Ribeirão Candidópolis catchment in the Itabira municipality, State of Minas Gerais (Brazil). The software used in this study is GMS: MODFLOW, which enabled a steady state flow regime modeling by means of the Finite Difference Method (FDM) and the parameters calibration from a semi-transient approach. To assess the performance of the model, the Mean Error (ME), the Mean Absolute Error (MAE), and the Root Mean Square Error (RMSE) were calculated. The results proved to be compatible with the values observed in the field. After several adjustments of the boundary conditions, a Normalized Root Mean Square (NRMS) of 9.648% and a correlation coefficient of 0.993 were obtained. Despite the economic importance of the study area, studies made available on groundwater flow behavior are rare. The results obtained via modeling are in accordance with the data observed in the field and consequently our model can be used in the study of water level changes.
Referências
Aghlmand, R. & Abbasi, A. 2019, ‘Application of MODFLOW with Boundary Conditions Analyses Based on Limited Available Observations: A Case Study of Birjand Plain in East Iran’, Water, vol. 11, no. 9, pp. 1-21. https://doi.org/10.3390/w11091904
Arnold, J.G., Allen, P.M., Muttiah, R. & Bernhardt, G. 1995, ‘Automated base flow separation and recession analysis techniques’, Groundwater, vol. 33, no. 6, pp. 1010-18.
Ayvaz, M.T. & Elçi, A. 2014, ‘Groundwater Recharge Rate and Zone Structure Estimation Using PSOLVER Algorithm’, Groundwater, vol. 52, no. 3, pp. 434-47. https://doi.org/10.1111/gwat.12077
Bushira, K.M., Hernandez, J.R. & Sheng, Z. 2017, ‘Surface and groundwater flow modeling for calibrating steady state using MODFLOW in Colorado River Delta, Baja California, Mexico’, Modeling Earth Systems and Environment, vol. 3, no. 2, pp. 815-24.
Carvalho, V.E.C., Rezende, K.S., Paes, B.S., Betim, L.S. & Marques, E.A.G. 2014, ‘Estimativa da Recarga em uma Sub-bacia Hidrográfica Rural Através do Método da Variação do Nível D’Água’, Revista Brasileira de Recursos Hídricos, vol. 19, no. 1, pp. 271-80.
Chakraborty, S., Maity, P.K. & Das, S. 2019, ‘Investigation, simulation, identification and prediction of groundwater levels in coastal areas of Purba Midnapur, India, using MODFLOW’, Environment, Development and Sustainability, vol. 22, no. 4, pp. 3805-37. https://doi.org/10.1007/s10668-019-00344-1
Chatterjee, R., Jain, A.K., Chandra, S., Tomar, V., Parchure, P.K. & Ahmed, S. 2018, ‘Mapping and management of aquifers suering from over-exploitation of groundwater resources in Baswa-Bandikui watershed, Rajasthan, India’, Environmental Earth Scinces, vol. 77, no. 5, p. 157.
Companhia de Pesquisa de Recursos Minerais (CPRM) 2000, ‘Programa Levantamentos Geológicos Básicos do Brasil. Itabira, Folha SE.23-Z-D-IV’, Estado de Minas Gerais. Escala 1:100.000. Brasília.
El-Zehairy, A.A., Lubczynski, M.W. & Gurwin, J. 2018, ‘Interactions of artificial lakes with groundwater applying na integrated MODFLOW solution’, Hydrogeology Journal, vol. 26, no. 1, pp. 109-32. https://doi.org/10.1007/s10040-017-1641-x
Enemark, T., Peeters, L., Mallants, D. & Batelaan, O. 2019, ‘Hydrogeological conceptual model building and testing: A review’, Journal of Hydrology, vol. 569, pp. 310-29.
Feitosa, F.A.C. & Filho, J. M. (eds) 2008, Hidrogeologia - Conceitos e Aplicações. Serviço Geológico do Brasil, (CPRM).
Filho, C.A.C. & Cota, S.D.S. 2002, ‘Análise de sensibilidade para o parâmetro condutância na condição de contorno de tipo 3 do modelo MODFLOW’, Revista Águas Subterrâneas, vol. 17, pp. 26-30.
Fiorillo, F., Pagnozzi, M. & Ventafridda, G. 2014, ‘A model to simulate recharge processes of karst massifs’, Hydrological Processes, vol. 29, no. 1, pp. 2301-14. https://doi.org/10.1002/hyp.10353
Galvão, P.H.F. 2015, ‘Hydrogeological Conceptual Model of Sete Lagoas (MG) and Associated Implications of Urban Development in Karst Region’. PhD Thesis, Universidade de São Paulo.
GMS 2018, GMS 10.4 Tutorial: MODFLOW-Automated Parameter Estimation. Aquaveo: Provo, Utah, UT, USA.
Gonçalves, J.A.C., Almeida M.S.L., Ferreira M.A.M. & Paiva B.L.F. 2019, ‘Disponibilidade de Águas Superficiais e Subterrâneas na bacia do Rio do Peixe, Itabira, MG’, Research, Society and Development, vol. 8, no. 12, pp. 1-17. https://doi.org/10.33448/rsd-v8i12.1904
Gonçalves, J.A.C., Scudino, P.C.B., Sobreira, F.G. 2005, ‘Reservas Renováveis e Caracterização dos Aquíferos Fissurais do Leste da Zona da Mata de Minas Gerais e Adjacências’, Geologia USP. Série Científica, vol. 5, no. 1, pp. 19-27. https://doi.org/10.5327/S1519-874X2005000100002
Guiguer, N. & Franz, T. 1996, Visual MODFLOW. User’s manual, Waterloo Hydrogeologic. WHI.
Gurwin, J. & Lubczynski, M. 2005, ‘Modeling of complex multi-aquifer systems for groundwater resources evaluation—Swidnica study case (Poland)’, Hydrogeology Journal, vol. 13, no. 4, pp. 627-39. https://doi.org/10.1007/s10040-004-0382-9
Harbaugh, A.W. 2005, MODFLOW-2005, the U.S. Geological Survey Modular Ground-Water Model—The Ground-Water Flow Process. U.S. Geological Survey Techniques and Methods 6-A16.
Hashemi, H., Berndtsson, R. & Kompani-Zare, M. 2012, ‘Steady-State Unconfined Aquifer Simulation of the Gareh-Bygone Plain, Iran, The Open Hydrology Journal, vol. 6, pp. 58-67. https://doi.org/10.2174/1874378101206010058
He, J., Ma, J., Zhang, P., Tian, L., Zhu, G., Edmunds, W.M. & Zhang, Q. 2012, ‘Groundwater recharge environments and hydrogeochemical evolution in the Jiuquan Basin, Northwest China’, Applied Geochemistry, vol. 27, no. 4, pp. 866-78. https://doi.org/10.1016/j.apgeochem.2012.01.014
He, X., Sonnenborg, T.O., Jorgensen, F., Hoyer, A.S., Moller, R.R. & Jensen, K.H. 2013, ‘Analyzing the effects of geological and parameter uncertainty on prediction of groundwater head and travel time’, Hydrology and Earth System Sciences, vol. 17, no. 8, pp. 3245-60.
Jalut, Q.H., Abbas, N.L. & Mohammad, A.T. 2018, ‘Management of groundwater resources in the Al-Mansourieh zone in the Diyala River Basin in Eastern Iraq’, Groundwater for Sustainable Development, vol. 6, pp. 79-86. https://doi.org/10.1016/j.gsd.2017.11.004
Jingli, S., Ling, L., Yali, C. & Zhaoji, Z. 2013, ‘Groundwater Flow Simulation and its Application in Groundwater Resource Evaluation in the North China Plain, China’, Acta Geologica Sinica, vol. 87, pp. 243-53.
Jordt-Evangelista, H., Lana, C., Delgado, C.E.R. & Viana, D.J. 2016, ‘Age of the emerald mineralization from the Itabira-Nova Era District, Minas Gerais, Brazil, based on LA-ICP-MS geochronology of cogenetic titanite’, Brazilian Journal Geology, vol. 46, no. 3, pp. 427-37. https://doi.org/10.1590/2317-4889201620150074
Karimi, L., Motagh, M. & Entezam, I. 2019, ‘Modeling groundwater level fluctuations in Tehran aquifer: Results from a 3D unconfined aquifer model’, Groundwater for Sustainable Development, vol. 8, pp. 439-49.
Katpatal, Y.B., Pophare, A.M. & Lamsoge, B.R. 2014, ‘A groundwater flow model for overexploited basaltic aquifer and Bazada formation in India’, Environmental Earth Sciences, vol. 72, pp. 4413-25.
Khadri, S.F.R. & Pande, C. 2016, ‘Groundwater flow modeling for calibrating steady state using MODFLOW software: A case study of Mahesh River basin, India’, Modeling Earth Systems and Environment, vol. 2, no. 39, pp. 1-17. https://doi.org/10.1007/s40808-015-0049-7
Kushwaha, R.K., Pandit, M.K. & Goyal, R. 2009, ‘MODFLOW Based Groundwater Resource Evaluation and Prediction in Mendha Sub-Basin, NE Rajasthan’, Journal of the Geological Society of India, vol. 74, pp. 449-58.
Lana, C., Alkmim, F., Armstrong, R., Scholz, R., Romano, R. & Nalini, H. 2013, ‘The ancestry and magmatic evolution of Archaean TTG rocks of the Quadrilátero Ferrífero, southeast Brazi’, Precambrian Research, vol. 231, pp. 157-73. https://doi.org/10.1016/j.precamres.2013.03.008
Lutz, A.D., Thomas, J.M., Pohll, G.M. & McKay, W.A. 2007, ‘Groundwater resource sustainability in the Nabogo Basin of Ghana, West Africa’, Journal of African Earth Sciences, vol. 49, pp. 61-70.
McDonald, M.G. & Harbaugh, A.W. 1988, A Modular Three-Dimensional Finite-Diference Ground-Water Flow Model; U.S. Geological Survey, Open File Report 83–875; US Geological Survey: Reston, VA, USA.
Meredith, E. & Blais, N. 2019, ‘Quantifying irrigation recharge sources using groundwater modeling’, Agricultural Water Management, vol. 214, pp. 9-16. https://doi.org/10.1016/j.agwat.2018.12.032
Nan, T., Li, K., Wu, J. & Yin, L. 2018, ‘Assessment of groundwater exploitation in an aquifer using the random walk on grid method: A case study at Ordos, China’, Hydrogeology Journal, vol. 26, no. 5, pp. 1669-81. https://doi.org/10.1007/s10040-018-1762-x
Oliveira, P.T.S., Wendland, E., Nearing, M. A., Scott, R.L., Rosolem, R. & Rocha, H.R. 2015, ‘The water balance components of undisturbed tropical woodlands in the Brazilian Cerrado’, Hydrology and Earth System Sciences, vol. 19, no. 1, pp. 2899-10. https://doi.org/10.5194/hess-19-2899-2015
Owen, S.J., Jones, N.L. & Holland, J.P. 1996, ‘A Comprehensive Modeling Environment for the Simulation of Groundwater Flow and Transport’, Engineering with Computers, vol. 12, pp. 235-42. https://doi.org/10.1007/BF01198737
Pholkern, K., Saraphirom, P., Cloutier, V. & Srisuk, K. 2019, ‘Use of Alternative Hydrogeological Conceptual Models to Assess the Potential Impact of Climate Change on Groundwater Sustainable Yield in Central Huai Luang Basin, Northeast Thailand’, Water, vol. 11, no. 241, pp. 1-28. https://doi.org/10.3390/w11020241
Poeter, E. & Anderson, D. 2005, ‘Multimodel Ranking and Inference in Ground Water Modeling’, GroundWater, vol. 43, pp. 597-605. https://doi.org/10.1111/j.1745-6584.2005.0061.x
Qiu, S., Liang, X., Xiao, C., Huang, H., Fang, Z. & Lv, F. 2015, ‘Numerical simulation of groundwater flow in a River Valley Basin in Jilin Urban Area, China’, Water, vol. 7, no. 10, pp. 5768-87. https://doi.org/10.3390/w7105768
Rapantova, N., Tylcer, J. & Vojtek, D. 2017, ‘Numerical modelling as a tool for optimisation of ground water exploitation in urban and industrial areas’, Procedia Engineering, vol. 209, pp. 92-99. https://doi.org/10.1016/j.proeng.2017.11.134
Reilly, T.E. & Harbaugh, A.W. 2004, Guidelines for Evaluating Ground-Water Flow Models, US Geological Survey, Scientific Investigations Report 2004-5038, USGS Reston, VA, USA.
Roy, P.K., Roy, S.S., Giri, A., Banerjee, G., Majumder, A. & Mazumdar, A. 2015, ‘Study of impact on surface water and groundwater around flow fields due to changes in river stage using groundwater modeling system’, Clean Technologies and Environmental Policy, vol. 17, pp. 145-154. https://doi.org/10.1007/s10098-014-0769-9
Sadeghi-Tabas, S., Samadi, S.Z., Akbarpour, A. & Pourreza-Bilondi, M. 2017, ‘Sustainable groundwater modeling using single- and multi-objective optimization algorithms’, Journal of Hydroinformatics, vol. 19, no. 1, pp. 97-114. https://doi.org/10.2166/hydro.2016.006
Santos, R.M. & Koide, S. 2016, ‘Avaliação da Recarga de Águas Subterrâneas em Ambiente de Cerrado com Base em Modelagem Numérica do Fluxo em Meio Poroso Saturado’, Revista Brasileira de Recursos Hídricos, vol. 21, no. 2, pp. 451-65. https://doi.org/10.21168/rbrh.v21n2.p451-465
Sobeih, M.M., El-Arabi, N.E., Helal, E.E.D.Y. & Awad, B.S. 2017, ‘Management of water resources to control groundwater levels in the southern area of the western Nile delta, Egypt’, Water Science, vol. 31, no. 2, pp. 137-50. https://doi.org/10.1016/j.wsj.2017.09.001
Thornthwaite, C.W. 1948, ‘Na approach toward a rational classification of climate’, Geographical Review, vol. 38, pp. 55-94.
United Nations Educational Scientific and Cultural Organization (UNESCO) 2015, Water Assessment Programme, ISBN:978-92-3-100080-5.
White, W.B. 2003, ‘Conceptual models for karstic aquifers, Speleogenesis and Evolution of Karst Aquifers, vol. 1, no. 1, pp. 11-16.
Xue, S., Liu, Y., Liu, S., Li, W., Wu, Y. & Pei, Y. 2018, ‘Numerical simulation for groundwater distribution after mining in Zhuanlongwan mining area based on visual MODFLOW’, Environmental Earth Science, vol. 77, no. 11, pp. 1-9. https://doi.org/10.1007/s12665-018-7575-3
Downloads
Arquivos adicionais
Publicado
Edição
Seção
Licença
Copyright (c) 2021 Anuário do Instituto de Geociências
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Os artigos publicados nesta revista se encontram sob a llicença Creative Commons — Atribuição 4.0 Internacional — CC BY 4.0, que permite o uso, distribuição e reprodução em qualquer meio, contanto que o trabalho original seja devidamente citado.