Integration of Geological, Petrographic and Abrasion Resistance Data of the Gneisses from Santa Catarina Granulithic Complex: An Application in the Road Paving Sector
DOI:
https://doi.org/10.11137/1982-3908_2022_45_41795Palavras-chave:
Asphalts aggregates, Alterations, MicrofracturesResumo
Among the factors that contribute to the adequate performance of the aggregates, the abrasion resistance of these materials stands out, a parameter strongly related to the mineral composition of the rock. Therefore, this work aims to analyze and integrate data from Los Angeles abrasion tests to the petrographic analysis of gneisses of the Santa Catarina Granulithic Complex in order to understand the petrographic characteristics that can interfere or control the resistance results, such as: composition, texture, mineralogical alterations, granulometry and microfractures. The work was developed in four stages: (1) field activities, where descriptions of the outcrops of the four quarries studied were performed, focusing on the characterization of the compositional, textural and structural aspects of the rocks, in addition to sample collection and photographic survey; (2) petrography via conventional optical microscope and BSE images and semi quantitative analysis by electron microscope; (3) analysis of Los Angeles abrasion test data samples from the studied quarries and (4) their integration with petrographic data. Two main lithologies, enderbitic and tonalitic gneiss were identified. The results of the Los Angeles abrasion tests showed that the crushed aggregates (gneiss) of Gaspar Quarry presented the lowest abrasion values, followed by the Vale Selke, Rio Branco and 1001 quarries. Regarding composition, the enderbitic gneiss presented an average loss of 17.2%, while in the tonalitic gneiss the loss was 17.7%. The composition (high content of mafic minerals), texture and the presence of localized microfractures were the main factors that contributed to the higher values found in quarry 1001. However, both lithologies present acceptable abrasion results, in view of the specifications of the regulatory services, DNIT (031/2006) and DNIT (141/2010). The present study shows a good correlation between the result of the Los Angeles abrasion and the petrographic data, showing that composition is the main determining factor of Los Angeles abrasion results.
Referências
Al-Khateeb G.G., Khedaywi T.S., Obaidat T.I.A. & Najib A.M. 2013, ‘Laboratory study for with paring rutting performance of limestone and basalt superpave asphalt mixtures’, Journal of Materials in Civil Engineering, vol. 25, no. 1, pp. 21-9, DOI:10.1061/(ASCE)MT.1943-5533.0000519.
Almeida, F. F. M., Hasui, Y., Brito Neves, B. B., Fuck, R. A. 1981, ‘Brazilian structural provinces: an introduction’, Earth-Science Reviews, 17, 1-29.
Almeida, F.F.M., Hasui, Y., Brito Neves, B.B. & Fuck, R.A. 1977, ‘The structural provinces of Brazil’, VIII Simpósio de Geologia do Nordeste, Campina Grande, pp. 363-91.
Alves, V.A.H.S. 2014, ‘Evaluation of resistance to mechanical degradation of aggregates in the Metropolitan Region of Rio de Janeiro by Digital Imaging Techniques’, Dissertation, Institute of Geosciences, Federal University of Rio de Janeiro.
Basei, M.A.S., Siga Jr, O., Machia Velli, A. & Mancini, F. 1992, ‘Tectonic evolution of the lands between the Belts Ribeira and Dom Feliciano (PR - SC)’, Revista Brasileira de Geociências, vol. 22, no. 2, pp. 216-21.
Basei, M.A.S., Siga Jr., O., Masquelin, H., Harara, O.M., Reis Neto, J.M. & Preciozi, F. 2000, 'The Dom Feliciano Belt and the Rio de la Plata Craton: tectonic evolution and correlati/on with similar provinces ofsouthwestern Africa', in U.G. Cordani, E.J. Milani, A. Thomaz Filho & D.A. Campos (eds), Tectonic Evolution of South America, Universidade de São Paulo, Rio de Janeiro, pp. 311-34.
Behiry A.E.M. & Ebrahim, A. 2016, ‘Optimisation of hot mix asphalt performance based on aggregate selection’, International Journal of Pavement Engineering, vol. 17, no. 10, pp. 924-40, DOI:10.1080/10298436.2015.1043634.
Bernucci, L.B., Motta, L.M.G., Ceratti, J.A.P. & Soares, J.B. 2007, Asphalt Paving: Basic Training for Engineers, PETROBRAS, ADEBA, Rio de Janeiro, 501p.
Bernucci L.B., Motta, L.M.G., Ceratti, J.A.P. & Soares, J.B. 2008, Asphalt Paving: Basic training for engineers, PETROBRAS, ADEBA, Rio de Janeiro, 501p.
Bernucci, L.B., Motta, L.M.G., Ceratti, J.A.P. & Soares, J.B. 2010, Asphalt paving: basic training for engineers, PETROBRAS, ABEDA, Rio de Janeiro, 504 p.
Biondi, J.C., Schicker, G. & Bugalho, A. 1992, ‘Mineralizing processes in Tardi-Orogenic Basins: 1. Influence of Rigid Structures on the Generation of Minepar deposits and Ribeirão da Prata, Itajaí Group’, Revista Brasileira de Geociências, vol. 22, no. 3, pp. 275-88.
Bizzi, L.A., Schobbenhaus, C., Vidotti, R.M. & Gonçalves, J.H. 2003, Geology, tectonics and mineral resources of Brazil, CPRM/Serviço Geológico do Brasil, Brasília.
CPRM. 2011, ‘Geological mapping of leaf SG-22-Z-B-Joinville’, Brazil's Geology Program. Scale 1:250000.
DNER – National Department of Roads and Rods and Road. 1998, DNER-ME 035, Aggregates: Determination of The Los Angeles Abrasion - Test Method, Rio de Janeiro.
DNIT – National Department of Transport Infrastructure. 2010, ‘Paving Granulometrically stabilized base, Service specification’, 141/2010 – ES.
DNIT – National Department of Transport Infrastructure - DNIT. 2006. Flexible floors: asphalt concrete and Service Specification, Standard 031/2006 – ES.
Fick. G., Taylor, P., Christman, R. & Ruiz, J.M. 2012, Field Reference Manual for Quality Concrete Pavements no. FHWA-HIF-13-059, U.S. Department of Transportation.
Fornari, A. 1998, ‘Geology and metallogenesis of the southern part of the Cráton de Luís Alves – SC’, PhD thesis, Institute of Geosciences, State University of Campinas.
Ge, H., Sha, A., Han, Z. & Xiong, X. 2018, ‘Three-dimensional characterization of morphology and abrasion decay laws for coarse aggregates’, Construction and Building Materials, vol. 188, no. 1, pp. 58-67, DOI:10.1016/j.conbuildmat.2018.08.110.
García-González, C., Yepes, J. & Franesqui, M.A. 2020, ‘Geomechanical characterization of volcanic aggregates for paving construction applications and correlation with the rock properties’, Transportation Geotechnics, vol. 24, e100383, DOI:10.1016/j.trgeo.2020.100383.
Harara, O.M. 2001, 'Mapping, petrological and geochronologic investigation of lithotypes of the upper Rio Negro region (PR-SC): an example of distinct magmatic activities during the Neoproterozoic', PhD thesis, Institute of Geosciences, University of São Paulo.
Hartmann, L.A. 1976, ‘Occurrence of granutos in Luiz Alves, SC', 29o Brazilian Congress of Geology, e32í.
Hartmann, L.A. 1988, ‘Rare earth geochemistry and granuto geothermometry of Dom Pedrito and Luís Alves granutoes, in the extreme south of Brazil’, Geochimica Brasiliensis, vol. 2, no. 1, pp. 1-14.
Hartmann, L.A., Silva, L.C. & Orlandi, F. V. 1979, ‘The Granolithic Complex of Santa Catarina: Description and genetic implications’, Acta Geologica Leopoldensia, vol. 3, no. 6, pp. 93-112.
Hartmann, L.A., Nardi, L.S. & Cupertino, J.A. 1979, ‘The cataclase in the granutos of Luís Alves (SC)’, Acta Geologica Leopoldensia, vol. 3, no. 6, pp. 29-44.
Heilbron, M., Pedrosa-Soares, A.C., Campos Neto, M., Silva L.C., Trouw, R.A.J. & Janasi, V.C. 2004, ‘The Mantiqueira Province’, in V. Mantesso-Neto, A. Bartorelli, C.D.R. Carneiro & B.B. Brito Neves (eds), The Unveiling of a Continent: The Modern Geology of South America and the Legacy of the Work of Fernando Flávio Marques de Almeida, Ed. Beca, São Paulo, pp. 203-34.
Kaul, P.F.T. 1979, ‘O Cráton de Luiz Alves', 31o Brazilian Congress of Geology. Camboriú, vol. 5, pp. 2677-83.
Kaul, P.F.T. & Teixeira, W. 1982, ‘Archean and early proterozoic complexes Santa Catarina, Paraná and São Paulo states, south-southeastern Brazil: an outline of their geological evolution’, Revista Brasileira de Geociências, vol. 12, no. 1, pp. 172-82.
Klein, C. & Dutrow, B. 2012. Manual of science of minerals, 23nd edn, Bookman, Porto Alegre.
Le Maitre, R.W. 2002, Igneous rocks: a classification and glossary of terms. Recommendations of the International Union of Geological Sciences Subcommission on the systematics of Igneous rocks, Cambridge University Press, Cambridge.
Li, C., Zheng, J., Zhang, Z., Sha, A. & Li, J. 2020, ‘Morphology-based indices and recommended sampling sizes for using image-based methods to quantify degradations of compacted aggregate materials’, Construction and Building Materials, vol. 230, e116970, DOI:10.1016/j.conbuildmat.2019.116970.
Moreira, M.L.O. & Marimon, M.P. 1980, 'Petrographic and petrochemical assay of rocks of the granulito facies, Granulithic Complex of Santa Catarina, Folha SG.22-ZB', 31o Congresso Brasileiro de Geologia, vol. 4, pp. 2119-33.
Petrakis, G.H., Motoki, A., Sichel, S., Zucco, L.L., Aires, J.R. & Mello, S. 2010, ‘Geology of gravel deposits and artificial sand of special quality: examples of the alkalisienite of Nova Iguaçu, RJ, and riolites from Nova Prata, RS’, Geosciences, vol. 29, no. 1, pp. 21-32.
Remedy, M.J., Ribeiro, R.P. & Curtis Neto, J.A. 2018, ‘Correlations between petrography and technological properties of petrous materials aiming to use as a railway ballast’, Geociências, vol. 37, no. 3, pp. 669-81.
Roberts, F.L., Kandhal, P.S., Brown, R.E., Lee, D.-Y. & Kennedy, T.W. 1996, Hot Mix Asphalt Materials, Mixture Design and Construction, 2nd edn, NAPA Research and Education Foundation, Maryland.
Siga Jr., O; Basei, M.A.S.; Reis Neto, J.M dos, Machiavelli, A. & Harara, O.M. 1995, ‘The Atuba Complex: a paleoproterozoic belt intensively reworked in the neoproterozoic era’. BoLIG-USP, Ser.Cient., 26: 69-98.
Sengör, A.M.C. 1990, ‘Plate tectonics and orogenic research after 25 years: a Tethyan perspective’, Earth-Sciences Reviews, vol. 27, no. 1-2, pp. 1-201, DOI:10.1016/0012-8252(90)90002-D.
Streckeisen, A.L. 1974, ‘How should chamockitic rocks be named?’, Annales de la Société géologique de Belgique, Centenaire de la Société Géologique de Belgique, Liège, pp. 349-60.
Streckeisen, A.L. 1976, ‘To each plutonic rock its proper name’, Earth Science Reviews, vol. 12, no.1, pp. 1-33, DOI:10.1016/0012-8252(76)90052-0.
Taylor, P.C., Kosmatka, S. H. & Voigt, G. F. 2007. ‘Integrated Materials and Construction Practices for Concrete Pavement: A State-of-the-Practice Manual’, U.S. Department of Transportation, no. FHWA HIF -07 - 004.
Teixeira, L.H.B. & Araújo, O.C.C. 2018, ‘Study of the Advantages of Asphalt-Rubber in Relation to Conventional Asphalt’, Dissertation, Universidade Evangélica, Anápolis.
Trotta, R.P., Barroso, E.V. & Motta, L.M.G. 2021, ‘Migmatitic gneiss aggregates: Compositional, mechanical, and morphological responses to innate heterogeneity’, Engineering Geology, vol. 283, e106002, DOI:10.1016/j.enggeo.2021.106002.
Tunc, E.T. & Alyamac, K.S. 2019, ‘A preliminary estimation method of Los Angeles abrasion value of concrete aggregates’, Construction and Building Materials, vol. 222, no. 1, pp. 437-46, DOI:10.1016/j.conbuildmat.2019.06.176.
Old, J.L. 2005, ‘Industrial Minerals: Aggregates’, in J.L. Velhos (ed.), Industrial Mineralogy: principles and applications, LIDEL, pp. 3-15.
Vonto, D.C., Tchakounte, N.J., Gentry, F.C., Zaguy-Guerembo, R.L., Zame, P.Z., Djanarthany, S. & Nkoumbou, C. 2020, ‘Geology and geotechnical characteristics of the Gbago and Ngouaka plutonic rocks, North East of Bangui, Central Africa Republic’, Journal of African Earth Sciences, vol. 167, e103831, DOI:10.1016/j.jafrearsci.2020.103831.
Downloads
Publicado
Edição
Seção
Licença
Os artigos publicados nesta revista se encontram sob a llicença Creative Commons — Atribuição 4.0 Internacional — CC BY 4.0, que permite o uso, distribuição e reprodução em qualquer meio, contanto que o trabalho original seja devidamente citado.