Variabilidade Interanual do Potencial Energético das Ondas Oceânicas na Costa Setentrional do Rio Grande do Norte, Atlântico Equatorial Sul

Autores

DOI:

https://doi.org/10.11137/1982-3908_2022_45_46460

Palavras-chave:

Energia das ondas, Variabilidade sazonal, Nordeste do Brasil

Resumo

Este estudo tem como objetivo descrever o potencial de energia das ondas oceânicas na costa do Estado do Rio Grande do Norte, Extremo Nordeste do Brasil, com base em resultados de simulações numéricas de ondas entre os anos de 2010 a 2017. Para caracterizar o regime das ondas e avaliar o potencial de energia das ondas foram usados os modelos espectrais: WaveWatch III, este para a geração de ondas em águas offshore com saídas para as condições de contorno para o modelo de propagação das ondas; e, o modelo SWAN para as transformações e propagação das ondas geradas ao largo até a zona costeira. Testes de validação foram realizados com dados de medições in situ para ser avaliado o fluxo de energia de ondas em pontos próximos da costa. A avaliação da série temporal dos dados da simulação é apresentada quanto sua variação temporal, incluindo a variabilidade sazonal, e quanto sua distribuição espacial ao longo do domínio geográfico da modelagem. Os resultados estatísticos mostram que ao longo dos anos o potencial de energia das ondas possui variabilidade significativa entre os meses. De dezembro a março a energia das ondas são mais intensas, com valores máximos atingindo 16,7 kW/m e 25,9 kW/m, influenciadas pelas maiores alturas significativas de ondas e direções predominantes de N para NE. De junho a setembro, o comportamento do potencial de energia das ondas é reduzido a baixos níveis, 0,03 e 0,9 kW/m, com ondas provenientes de N a ENE. Em termos de distribuição espacial, o talude continental foi considerado a zona mais energética, com média de 25 kW/m durante o verão. Contudo, os resultados mostraram também que em alguns setores da plataforma continental interna, próximo da profundidade de 25 m, houve a ocorrência de valores de potencial de energia de ondas com máximos de 44 kW/m durante o verão.

Biografia do Autor

Maria de Fátima Alves de Matos, Instituto SENAI de Inovação em Energias Renováveis-ISI-ER-RN

Setor de Energias Renováveis

Atua na área de Geodinâmica, com ênfase em Modelagem de Ondas Oceânicas, Hidrodinâmica Costeira, Sensoriamento Remoto aplicado e energia renováveis.

Ada Cristina Scudelari, Universidade Federal do Rio Grande do Norte

Professora Titular do Departamento de Engenharia Civil da UFRN

Tem experiência na área de Engenharia Civil, com ênfase em Modelagem Hidrodinâmica Ambiental, atuando principalmente nos seguintes temas: erosão costeira, caracterização e diagnóstico ambiental e métodos numéricos.

Venerando Eustáquio Amaro, Universidade Federal do Rio Grande do Norte

Coordenador do Laboratório de Geotecnologias Aplicadas, Modelagens Costeira e Oceânica (GNOMO) do Departamento de Engenharia Civil da UFRN. Atua em 2019 no Programa de Pós-Graduação em Engenharia Civil (PEC) e no Programa de Pós-Graduação em Geografia (PPGe) da UFRN. É pesquisador sênior em Geociências e Geofísica, com ênfase nas Geotecnologias Aplicadas (Geoprocessamento, Sensoriamento Remoto, Sistema de Informações Geográficas, Processamento Digital de Imagens, Banco de Dados Georreferenciados e Geodésia de Precisão), Análise de Riscos e Monitoramento Ambiental de Áreas Costeiras e Estuarinas.

Referências

Alamian, R., Shafaghat, R., Miri, S.J., Yazdanshenas, N. & Shakeri, M. 2014, 'Evaluation of technologies for harvesting wave energy in Caspian Sea', Renewable and Sustainable Energy Reviews, vol. 32, pp. 468-76. http://dx.doi.org/10.1016/j.rser.2014.01.036

Almeida, N.M., Vital, H. & Eichler, P.P.B. 2017, 'Aspectos sedimentológicos do talude continental setentrional do Rio Grande do Norte, NE do Brasil', Pesquisas em Geociências, vol. 44, no. 3, pp. 537-53. http://dx.doi.org/10.22456/1807-9806.83277

Akpinar, A. & Kömürcü, M.İ. 2012, 'Wave energy potential along the south-east coasts of the Black Sea'. Energy, vol. 42, pp. 289-302. https://doi.org/10.1016/j.energy.2012.03.057

Akpinar, A.; Van Vledder, G.P.; Kömürcü, M.İ. & Özger, M. 2012, 'Evaluation of the numerical wave model (SWAN) for wave simulation in the Black Sea', Continental Shelf Research, vol. 50, no. 19, pp. 80-99. https://doi.org/10.1016/j.csr.2012.09.012

Battjes, J.A. & Janssen, J.P.F.M. 1978, 'Energy loss and set-up due to breaking of random waves', Proceedings of International Conference on Coastal Engineering, pp. 569-87. https://ascelibrary.org/doi/10.1061/9780872621909.034

Barstow, S., Mørk, G., Mollison, D. & Cruz, J. 2008, ‘The wave energy resource’, in J. Cruz (ed.), Ocean Wave Energy, Current status and future perspectives, Springer, Switzerland, pp. 93-132.

Barstow, S., Mørk, G. & Lonseth, L. 2009, 'WorldWaves wave energy resource assessments from the deep ocean to the coast', Proceedings of the 8th European Wave and Tidal Energy Conference, pp. 149-59. http://www.homepages.ed.ac.uk/shs/Wave%20Energy/EWTEC%202009/EWTEC%202009%20(D)/papers/245.pdf

Bernhoff, H., Sjostedt, E. & Leijon, M. 2006, 'Wave energy resources in sheltered sea areas: a case study of the Baltic Sea', Renewable Energy, vol. 31, pp. 2164-70. https://doi.org/10.1016/j.renene.2005.10.016

Beyene, A. & Wilson, J.H. 2007, 'Digital mapping of California wave energy resource', International Journal Energy Research, vol. 31, pp. 1156-68. https://doi.org/10.1002/er.1326

Booij, N., Ris, R.C. & Holthuijsen, L.H. 1999, 'A Third-generation Wave Model for Coastal Regions, Part I, Model Description and Validation', Journal of Geophysical Research, vol. 104, no. 4, pp. 7649-66. https://doi.org/10.1029/98JC02622

Carvalho, J.T. 2010, ‘Simulação da distribuição de energia das ondas oceânicas ao largo do litoral brasileiro’, PhD thesis, Instituto Nacional de Pesquisas Espaciais. http://mtc-m16d.sid.inpe.br/col/sid.inpe.br/mtc-m19/2010/09.27.19.33/doc/publicacao.pdf

Cavalcanti, I.F.A., Ferreira, N.J., Silva, M.G.A.J. & Dias, M.A.F.S. 2009, Tempo e clima no Brasil, Editora Oficina de textos, São Paulo, São Paulo.

Chen, F., Lu, S.M., Tseng, K.T., Lee, S.C. & Wang, E. 2010, 'Assessment of renewable energy reserves in Taiwan', Renewable and Sustainable Energy Reviews, vol. 14, pp. 2511-28. https://doi.org/10.1016/j.rser.2010.06.021

Cornett, A.M. 2008, ‘A global wave energy resource assessment’, International Offshore and Polar Engineering Conference, Vancouver, CA, pp. 318-26.

Chu, P.C., Galanis, G. & Kuo, Y.H. 2010, ‘Statistical structure of global significant wave heights’, Conference on Probability and Statistics in Atmospheric Sciences, Atlanta, USA, pp. 1-6.

Czech, B. & Bauer, P. 2012, 'Wave energy converter concepts: design challenges and classification', Industrial Electronics Magazine, vol. 6, pp. 4-16. https://doi.org/10.1109/MIE.2012.2193290

Defne, Z., Haas, K.A. & Fritz, H.M. 2009, 'Wave power potential along the Atlantic coast of the southeastern USA', Renewable Energy, vol. 34, pp. 2197-205. https://doi.org/10.1016/j.renene.2009.02.019

Espindola, R.L. & Araújo, A.M. 2017, 'Wave energy resource of Brazil: An analysis from 35 years of ERA-Interim reanalysis data', PLOS One, pp. 1-28. https://doi.org/10.1371/journal.pone.0183501

Falcão, A.F.O. 2010, 'Wave energy utilization: A review of the technologies', Renewable and Sustainable Energy Reviews, vol. 14, no. 3, pp. 899-918. https://doi.org/10.1016/j.rser.2009.11.003

Falcão, A.F.O. & Henriques, J.C.C. 2019, 'The spring-like air compressibility effect in oscillating-waters-column wave energy converters: review and analyses', Renewable and Sustainable Energy Reviews, vol. 112, pp. 483-98. https://doi.org/10.1016/j.rser.2019.04.040

Fortes, C.J.E.M., Pinheiro, L. & Palha, A. 2007, ‘O pacote de dados SOPRO: evoluções recentes’, Jornadas Portuguesas de Engenharia Costeira e Portuária, Lisboa, PT, pp. 1-10.

Fortes, C.J.E.M., Pinheiro, L. & Santos, J.A. 2011, 'SOPRO 3.0 – Evolução do pacote integrado SOPRO', Vetor, vol. 21, no. 2, pp. 72-100. https://periodicos.furg.br/vetor/article/view/690

Galabov, V. 2013, ‘On the wave energy potential of the Bulgarian Black Sea Coast. Marine and Ocean Ecosystems’, Conference Proceedings of the 13th International Multidisciplinary Scientific Geo Conference, Albena, SGEM, pp. 831-38.

Gallagher, S., Tiron, R., Whelan, E., Gleeson, E., Dias, F. & McGrath, R. 2016, 'The nearshore wind and wave energy potential of Ireland: A high resolution assessment of availability and accessibility', Renewable Energy, vol. 88, pp. 494-516. https://doi.org/10.1016/j.renene.2015.11.010

Gunn, K. & Stock-Williams, C. 2012, 'Quantifying the global wave power', Renewable Energy, vol. 44, pp. 296-304. https://doi.org/10.1016/j.renene.2012.01.101

Hasselmann, K., Barnett, T.P., Bouws, E., Carlson, H., Cartwright, D.E., Enke, K., Ewing, J.A., Gienapp, H., Hasselmann, D.E., Kruseman, P., Meerburg, A., Miller, P., Olbers, D.J., Richter, K., Sell, W. & Walden, H. 1973, 'Measurements of wind wave-growth and swell decay during the Joint North Sea Wave Project (JONSWAP)', Ergnzungsheft Deutschen Hydrographischen Zeitschrift Reihe, vol. 8, no. 12, pp. 1-95.

Hughes, M.G. & Heap, A.D. 2010, 'National-scale wave energy resource assessment for Australia', Renewable Energy, vol. 35, pp. 1783-91. https://doi.org/10.1016/j.renene.2009.11.001

Iglesias, G., López, M., Carballo, R., Castro, A., Fraguela, J.A. & Frigaard, P. 2009, 'Wave energy potential in Galicia (NW Spain)', Renewable Energy, vol. 34, pp. 2323-33. https://doi.org/10.1016/j.renene.2009.03.030

Iglesias, G. & Carballo, R. 2010, 'Wave energy and nearshore hot spots: The case of the SE Bay of Biscay', Renewable Energy, vol. 35, pp. 2490-500. https://doi.org/10.1016/j.renene.2010.03.016

Innocentini, V., Prado, S.C.S.C., Pereira, C.S., Arantes, F.O. & Brandão, I.N. 2001, 'Ocorrência de vagas no Arquipélago de São Pedro e São Paulo: Caso 24 de outubro de 1999', Revista Brasileira de Meteorologia, vol. 16, no. 2, pp. 177-86. <http://mtc-m16b.sid.inpe.br/col/cptec.inpe.br/walmeida/2004/11.12.11.14/doc/Luciana.pdf>

Jahangir, M.H & Mazinani, M.M. 2020, 'Evaluation of the convertible offshore wave energy capacity of the southern strip of the Caspian Sea', Renewable Energy, vol. 151, no. 9, pp. 1-31. https://doi.org/10.1016/j.renene.2020.01.012

Jiang, H. & Chen, G. 2013, 'A global view on the swell and wind sea climate by the Jason-1 Mission: A revisit', Journal of Atmospheric and Oceanic Technology, vol. 30, pp. 1833-41. https://doi.org/10.1175/JTECH-D-12-00180.1

Kim, G., Jeong, W.M., Lee, K.S., Jun, K. & Lee, M.E. 2011, 'Offshore and nearshore wave energy assessment around the Korean Peninsula', Energy, vol. 36, pp. 1460-69. https://doi.org/10.1016/j.energy.2011.01.023

Kamranzad, B., Etmad-Shahidi, A. & Chegini, V. 2016, 'Sustainability of wave energy resources in southern Caspian Sea', Energy, vol. 97, pp. 549-59. https://doi.org/10.1016/j.energy.2015.11.063

Komen, G.J., Hasselmann, S. & Hasselmann, K. 1984, 'On the existence of a fully developed wind sea spectrum', Journal of Physical Oceanography, vol. 14, pp. 1271-85. https://doi.org/10.1175/1520-0485(1984)014<1271:OTEOAF>2.0.CO;2

Kompor, W., Ekkawatpanit, C., Kositgittiwong, D. 2018, 'Assessment of ocean wave energy resource potential in Thailand', Ocean and Coastal Management, vol. 160, no. 15, pp. 64-74. https://doi.org/10.1016/j.ocecoaman.2018.04.003

Kumar, V.S., Dubhashi, K.K., Nair, T.M.B. & Singh, J. 2013, 'Wave power potential at a few shallow-water locations around Indian coast', Current Science, vol. 40, no. 9, pp. 1219-24. https://www.jstor.org/stable/24092402

Lanfredi, N.W., Pousa, J.L., Mazio, C.A. & Dragani, W.C. 1992, 'Wave-power potential along the coast of the province of Buenos Aires, Argentina', Energy, vol. 17, pp. 997-1006. https://doi.org/10.1016/0360-5442(92)90016-S

Lavidas, G. & Venugopal, V. 2017, 'A 35year high-resolution wave atlas for nearshore energy production and economics at the Aegean Sea', Renewable Energy, vol. 103, pp. 401-17. https://doi.org/10.1016/j.renene.2016.11.055

Lenee-Bluhm, P., Paasch, R. & Özkan-Haller, H.T. 2011, 'Characterizing the wave energy resource of the US Pacific Northwest', Renewable Energy, vol. 36, pp. 2106-19. https://doi.org/10.1016/j.renene.2011.01.016

Liberti, L., Carillo, A. & Sannino, G. 2013, 'Wave energy resource assessment in the Mediterranean, the Italian perspective', Renewable Energy, vol. 50, pp. 938-49. https://doi.org/10.1016/j.renene.2012.08.023

Lisboa, R.C., Teixeira, P.R.F. & Fortes, C.J.E.M. 2017, 'Numerical evaluation of wave energy potential in the south of Brazil', Energy, vol. 121, pp. 176-84. https://doi.org/10.1016/j.energy.2017.01.001

López, I., Andreu, J., Ceballos, S. & Alegría, I.M. 2013, 'Review of wave energy technologies and the necessary power-equipment', Renewable and Sustainable Energy Reviews, vol. 27, pp. 413-34. https://doi.org/10.1016/j.rser.2013.07.009

Magagna, D. & Uihlein, A. 2015, JRC ocean energy status report. Technology, market and economic aspects of ocean energy in Europe, EUR 26983, viewed 2 January 2019, <https://op.europa.eu/en/publication-detail/-/publication/359b9147-ab4e-4639-b9db-17a6011a255f/language-en>.

Marin, F.O. 2009, ‘A subcorrente Norte do Brasil ao largo da costa do Nordeste’, Master thesis, Universidade de São Paulo. https://teses.usp.br/teses/disponiveis/21/21132/tde-22092009-142640/pt-br.php

Matos, M.F.A., Fortes, C.J.E.M., Amaro, V.E. & Scudelari, A.C. 2013, 'Comparative analysis of agitation obtained the numeric model (SWAN) in modeling Rio Grande do Norte (Brazil) northern coastal waves and field data', Revista de Gestão Costeira Integrada, vol. 13, no. 3, pp. 283-99. https://doi.org/10.5894/rgci378

Matos, M.F.A., Amaro, V.E., Fortes, C.J. & Scudelari, A.C. 2014, 'Interação entre ondas oceânicas e fundo marinho: resultados na plataforma continental setentrional do Rio Grande do Norte', Revista Brasileira de Geomorfologia, vol. 15, no. 3, pp. 371-91. https://doi.org/10.20502/rbg.v15i3.458

Mayer, D.A. & Weisberg, R.H. 1993, 'A description of COADS Surface Meteorological Fieldsand the Implied Sverdrup Transports for the Atlantic Ocean from 30°S to 60°N', Journal of Physical Oceanography, vol. 23, pp. 2201-21. https://doi.org/10.1175/1520-0485(1993)023<2201:ADOCSM>2.0.CO;2

Mørk, G., Barstow, S., Kabuth, A. & Pontes, M.T. 2010, ‘Assessing the global wave energy potential’, International Conference on Ocean, Offshore Mechanics and Arctic Engineering, 2010. Shanghai, pp. 1-8. https://doi.org/10.1115/OMAE2010-20473

Nascimento Neto, F.C., Vital, H., Araújo, I.R.F. & Gomes, M.P. 2019, 'Campo de cordões arenosos da plataforma interna setentrional do Rio Grande do Norte, adjacente a Galinhos-Guamaré, Brasil', Anuário do Instituto de Geociências, vol. 42, no. 2, pp. 50-58. https://doi.org/10.11137/2019_2_50_58

One Earth Future 2016, Ocean energy strategic roadmap. Building ocean energy for Europe, report EUR, p. 1-74

Onea, F. & Rusu, L. 2019, 'Wave power variation near the Romanian coastal waters', E3S Web of Conferences, vol. 103, pp. 1-5. https://doi.org/10.1051/e3sconf/201910301006

Pegorelli, C., Dottori, M. & Fortes, J. 2018, 'Evaluating the gravity wave energy potential off the Brazilian coast', Brazilian Journal of Oceanography, vol. 66, no. 2, pp. 220-33. http://dx.doi.org/10.1590/s1679-87592018011706602

Pessoa Neto, O.C. 2003, 'Estratigrafia de sequências da plataforma mista neogênica na Bacia Potiguar, margem equatorial Brasileira', Revista Brasileira de Geociências, vol. 33, pp. 263-78. http://ppegeo.igc.usp.br/index.php/rbg/article/view/9781/9795

Pinheiro, L.V., Fortes, C.J.E.M., Santos, J.A., Neves, M.G., Capitão, R. & Coli, A.B. 2005, ‘SOPRO. Caracterização da agitação marítima. Aplicações’, V Jornadas Portuguesas de Engenharia Costeira e Portuária, Lisboa, pp. 1-10.

Pontes, M.T., Aguiar, R. & Pires, H.O. 2005, 'A nearshore wave energy atlas for Portugal', Journal of Offshore Mechanics and Arctic Engineering, vol. 127, pp. 249-55. https://doi.org/10.1115/OMAE2003-37407

Rosman, P.C.C., Neves, C.F., Muehe, D. & Valentini, E.M.S. 2007, Estudos de vulnerabilidade no Litoral do Rio de Janeiro devido às mudanças climáticas, Fundação COPPETEC-PENO, viewed 11 August 2017, http://eadterrazul.org.br/pdf/Documentos/Oficina%20de%20Planejamento%20%20SCSLJ/2%C2%AA%20dia%209.08.14%20Saneamento%20B%C3%A1sico/PENO9501_RelatorioFinal_VulerabilidadeLitoralRJ.pdf

Rusu, E. & Soares, C.G. 2009, 'Numerical modelling to estimate the spatial distribution of the wave energy in the Portuguese nearshore', Renewable Energy, vol. 34, pp. 1501-16. https://doi.org/10.1016/j.renene.2008.10.027

Rusu, L. & Soares, C.G. 2012, 'Wave energy assessments in the Azores islands', Renewable Energy, vol. 45, pp. 183-96. https://doi.org/10.1016/j.renene.2012.02.027

Rusu, E. & Rusu, L. 2019, 'Evaluation of the wind power potential in the European nearshore of the Mediterranean Sea', E3S Web of Conferences, vol. 103, pp. 1-6. https://doi.org/10.1051/e3sconf/201910301003

Saket, A. & Etemad-Shahidi, A. 2012, 'Wave energy potential along the northern coast of the Gulf Oman, Iran', Renewable Energy, vol. 40, no. 1, pp. 90-7. https://doi.org/10.1016/j.renene.2011.09.024

Salcedo-Castro, J., Silva, N.P., Camargo, R., Marone, E. & Sepúlveda, H.H. 2017, 'Estimation on extreme wave heights return period from short-term interpolation of multi-mission satellite data: application to the South Atlantic', Ocean Science Discussion, vol. 81, pp. 1-17. https://doi.org/10.5194/os-14-911-2018

Santos A.J., Fortes, C.J.E.M., Pinheiro, L. & Neves, M.G. 2005, ‘A software package for wave characteristics in ports’, Proceeedings of the 12th International Conference of the International Maritime Association of the Mediterranean, Lisboa. http://repositorio.lnec.pt:8080/xmlui/handle/123456789/5592

Schott, F.A., Fischer, J. & Stramma, L. 1998, 'Transport and pathways of the Upper-layer circulation in the Western Tropical Atlantic', Journal of Physical Oceanography, vol. 28, pp. 1904-28. https://doi.org/10.1175/1520-0485(1998)028<1904:TAPOTU>2.0.CO;2

Semedo, A., Suselj, K., Rutgersson, A. & Sterl, A. 2011, 'A global view on the wind sea and swell climate and variability from ERA-40', Journal of Climate, vol. 24, pp. 1461-79.

Silva, P.E.D. 2013, ‘Caracterização do padrão de ondas na costa do Brasil por meio de modelagem numérica’, Master thesis, Instituto Nacional de Pesquisas Espaciais. http://mtc-m16d.sid.inpe.br/col/sid.inpe.br/mtc-m19/2013/03.12.16.55/doc/publicacao.pdf

Silveira, I.C.A., Miranda, L.B. & Brown, W.S. 1994, 'On the origins of the North Brazil Current', Journal of Geophysical Research, vol. 99, no. 11, pp. 22501-12. https://doi.org/10.1029/94JC01776

Soares, C., Bento, A.R., Gonçalvez, M., Silva, D. & Martinho, P. 2014, 'Numerical evaluation of the wave energy resource along the Atlantic European coast', Computers & Geosciences, vol. 71, pp. 37-49. https://doi.org/10.1016/j.cageo.2014.03.008

Stopa, J.E., Cheung, K.F. & Chen, Y.L. 2011, 'Assessment of wave energy resources in Hawaii', Renewable Energy, vol. 36, pp. 554-67. https://doi.org/10.1016/j.renene.2010.07.014

Sumer, V., Zhanaltay, Z. & Parkhomchik, L. 2019, ‘Renewable energy in Kazakhstan: potential and challenge’, in D. Kurochkin, E. Shabley & E. Shitlu (eds), Renewable Energy, Palgrave Macmillan, Cham., p. 221-9. http://www.rericjournal.ait.ac.th/index.php/reric/article/view/2333

Swan Team 2012, SWAN technical documentation. SWAN cycle II version 40.51, Delft University of Technology, viewed 5 July 2019, <http://falk.ucsd.edu/modeling/swantech.pdf>.

Testa, V. & Bosence, D.W.J. 1998, ‘Carbonato-siliciclastic sedimentation on high energy, ocean-facing, tropical ramp, NE Brazil’, in V.P. Wright & T.P. Burchette (eds), Carbonate Ramps, Geological Society, p. 55-71. http://repositorio.ufba.br/ri/handle/ri/13823

Vital, H., Stattegger, K., Amaro, V.E., Schwarzer, K., Frazão, E.P., Tabosa, W.F. & Silveira, I.M. 2008, ‘A modern high-energy siliciclastic–carbonate platform: continental shelf adjacent to northern Rio Grande do Norte state, Northeastern Brazil’, in G.J. Hampson, R.J. Steel, P.M. Burgess & R.W. Dalrymple, Recent Advances in Models of Siliciclastic Shallow-Marine Stratigraphy (Society for Sedimentary Geology), SEPM Special Publication, no. 90, p. 175–88. https://doi.org/10.2110/pec.08.90

WAMDI Group 1988, 'The WAM model - a third generation ocean wave prediction model', Journal of Physical Oceanography, vol. 18, pp. 1775-810. https://doi.org/10.1175/1520-0485(1988)018<1775:TWMTGO>2.0.CO;2

Wang, Y. 2019, 'Efficient prediction of wave energy converters power output considering bottom effects', Ocean Engineering, vol. 181, pp. 89-97. https://doi.org/10.3390/en12224329

Waters, R., Engström, J., Isberg, J. & Leijon, M. 2009, 'Wave climate off the Swedish west coast', Renewable Energy, vol. 34, pp. 1600-6. https://doi.org/10.1016/j.renene.2008.11.016

Westhuysen, A. Van Der., Zijlema, M. & Battjes, J. 2007, 'Nonlinear saturation-based whitecapping dissipation in SWAN for deep and shallow water', Coastal Engineering, vol. 54, pp. 151-71. https://doi.org/10.1016/j.coastaleng.2006.08.006

Wilmott, C.J. 1981, 'On the validation of models', Physical Geography, vol. 2, pp. 1984-94. https://doi.org/10.1080/02723646.1981.10642213

Young, I.R. 1999, 'Seasonal variability of the global ocean wind and wave climate', International Journal of Climatology, vol. 19, pp. 931-50. https://doi.org/10.1002/(SICI)1097-0088(199907)19:9<931::AID-JOC412>3.0.CO;2-O

Publicado

2022-05-18

Edição

Seção

Ciências do Ambiente