ENTRE FLORES E VISITANTES: ESTRATÉGIAS DE DISPONIBILIZAÇÃO E COLETA DE RECURSOS FLORAIS

Authors

  • Gudryan Jackson Barônio Programa de Pós-Graduação em Ecologia e Conservação de Recursos Naturais, Universidade Federal de Uberlândia, Campus Umuarama, R: Ceará, S/N, Bloco 2D, CEP 38400-902 -- Uberlândia -- Minas Gerais -- Brasil. http://orcid.org/0000-0003-2988-9168
  • Bárbara Matos da Cunha Guimarães Programa de Pós-Graduação em Ecologia e Conservação de Recursos Naturais, Universidade Federal de Uberlândia, Campus Umuarama, R: Ceará, S/N, Bloco 2D, CEP 38400-902 -- Uberlândia -- Minas Gerais -- Brasil.
  • Larissa Chagas de Oliveira Programa de Pós-Graduação em Biologia Vegetal, Universidade Federal de Uberlândia, Campus Umuarama, R: Ceará, S/N, Bloco 2D, CEP 38400-902 -- Uberlândia -- Minas Gerais -- Brasil.
  • Lilian Rodrigues Ferreira Melo Programa de Pós-Graduação em Ecologia e Conservação de Recursos Naturais, Universidade Federal de Uberlândia, Campus Umuarama, R: Ceará, S/N, Bloco 2D, CEP 38400-902 -- Uberlândia -- Minas Gerais -- Brasil.
  • Pedro Reis Antunes Programa de Pós-Graduação em Ecologia e Conservação de Recursos Naturais, Universidade Federal de Uberlândia, Campus Umuarama, R: Ceará, S/N, Bloco 2D, CEP 38400-902 -- Uberlândia -- Minas Gerais -- Brasil.
  • Renan Kobal de Oliveira Alves Cardoso Programa de Pós-Graduação em Ecologia e Conservação de Recursos Naturais, Universidade Federal de Uberlândia, Campus Umuarama, R: Ceará, S/N, Bloco 2D, CEP 38400-902 -- Uberlândia -- Minas Gerais -- Brasil.
  • Thayane Nogueira Araújo Programa de Pós-Graduação em Ecologia e Conservação de Recursos Naturais, Universidade Federal de Uberlândia, Campus Umuarama, R: Ceará, S/N, Bloco 2D, CEP 38400-902 -- Uberlândia -- Minas Gerais -- Brasil.

DOI:

https://doi.org/10.4257/oeco.2018.2204.04

Keywords:

floral rewards, floral visitor, plant-pollinator interaction, robber, thief

Abstract

Os recursos florais estão diretamente relacionados ao estabelecimento e manutenção de interações entre plantas e visitantes. Assim, os interagentes têm diferentes graus de dependência, que são definidos principalmente pelas estratégias das plantas em disponibilizar os recursos florais e pelas apresentadas pelos visitantes em coletar estes recursos. No entanto, as diferenças morfológicas e comportamentais dos visitantes permitem que eles assumam diferentes papéis - além de polinizadores - nas interações com as plantas, atuando como pilhadores ou ladrões de recurso. Nesse sentido, as plantas exibem diferentes estratégias de disponibilização de recursos enquanto os visitantes florais exibem diferentes estratégias de forrageamento para a obtenção desses recursos. Apresentamos aqui seções específicas sobre os principais recursos florais: néctar, pólen, óleo, resinas e perfumes florais com objetivo de revisar criticamente a literatura e apresentar: (1) as estratégias utilizadas pelas plantas para manter os polinizadores visitando suas flores e minimizar o desperdício de recursos, e (2) as estratégias utilizadas pelos visitantes para otimizar seu comportamento durante o forrageamento em função da disponibilidade de recursos florais. A manutenção da disponibilidade de recursos florais depende da manutenção de polinização, que por sua vez é condicionada ao modo como os visitantes se comportam durante a coleta e forrageio dos recursos nas flores. Dessa forma, as relações entre plantas e visitantes florais polinizadores são mutualísticas, embora os interesses sejam contrários, havendo a exploração mútua: na qual os visitantes necessitam de recursos disponibilizados pelas plantas e estas necessitam de serviço de polinização efetuados pelos visitantes.

 

BETWEEN FLOWERS AND VISITORS: STRATEGIES OF AVAILABILITY AND COLLECTION OF FLORAL RESOURCES. Floral resources are strongly related to the establishment and maintenance of plant-pollinator interactions. Interacting species have different degrees of dependence, which are defined mainly by the strategies of plants to make available the floral resources and those presented by visitors in collecting these resources. However, morphological and behavioral differences among visitors allow them to assume different roles - beyond the one of pollinators - in interactions with plants. For instance, floral visitors can act as resource thieves or robbers. Thus, plants exhibit different resource distribution strategies while the floral visitors exhibit different foraging strategies to obtain floral resources. We present specific sections on the main floral resources: nectar, pollen, oil, resins and perfumes with the purpose of critically review the literature in order to present: (1) the strategies used by plants to maintain pollinators visiting on flowers without waste floral resources, and (2) the strategies used by the animals to optimize their foraging as a function of the floral resources. The maintenance of the availability of floral resources depends on the maintenance of pollination, which in turn is conditioned to the way visitors behave during the visit in search of floral resources. Therefore, relationships between plants and floral visitors tend to be mutualistic, based relationships even when the individual interests are opposite. In this sense, there is some mutual exploration in which visitors explore resources made available by plants, which in their turn explore the pollination service done by visitors.

References

Adler, L. S. 2000. The ecological significance of toxic nectar. Oikos, 91(3), 409–420.

Agostini, K., Sazima, M., & Galetto, L. 2011. Nectar production dynamics and sugar composition in two Mucuna species (Leguminosae, Faboideae) with different specialized pollinators. Naturwissenschaften, 98(11), 933–942. DOI: 10.1007/s00114-011-0844-6

Agostini, K., Lopes, A. V., & Machado, I. C. 2014. Recursos Florais. In: A. R. Rech, K. Agostini, P. E. A. M. Oliveira, & I. C. Machado (Eds.), Biologia da polinização. pp. 129–150. Rio de Janeiro: Editora Projeto Cultural.

Almeida-Soares, S., Polatto, L. P., Dutra, J. C. S., & Torezan-Silingardi, H. M. 2010. Pollination of Adenocalymma bracteatum (Bignoniaceae): floral biology and visitors. Neotropical Ento-mology, 39, 941–948. DOI: 10.1590/s1519-566x2010000600015

Alves-dos-Santos, I., Machado, I. C., & Gaglianone, M. C. 2007. História natural de abelhas coletoras de óleo. Oecologia Brasiliensis, 11(4), 554–557. DOI: 10.4257/oeco.2007.1104.06

Alves-dos-Santos, I., Silva, C. I. da, Pinheiro, M., & Kleinert, A. de M. P. 2016. Quando um visitante floral é um polinizador? Rodriguésia, 67(2), 295–307. DOI: 10.1590/2175-7860201667202

Aronne, G., Giovanetti, M., Guarracino, M. R., & de Micco, V. 2012. Foraging rules of flower selection applied by colonies of Apis mellifera: ranking and associations of floral sources. Functional Ecology, 26(5), 1186–1196. DOI: 10.1111/j.1365-2435.2012.02017.x

Armbruster, W. S. 1984. The role of resin in Angiosperm pollination: ecological and che-mical considerations. American Journal of Botany, 71(8), 1149–1160.

Armbruster, W. S., & Herzig, A. L. 1984. Partitioning and Sharing of Pollinators by Four Sympatric Species of Dalechampia (Euphor-biaceae) in Panama. Annals of the Missouri Botanical Garden, 71(1), 1149–1160. DOI: 10.2307/2443391

Armbruster, W. S. 1993. Evolution of Plant Pollination Systems: Hypotheses and Tests with the Neotropical Vine Dalechampia. Evolution, 47(5), 1480. DOI: 10.2307/2410162

Avni, D., Hendriksma, H. P., Dag, A., Uni, Z., & Shafir, S. 2014. Nutritional aspects of honeybee-collected pollen and constraints on colony development in the eastern Mediterranean. Journal of Insect Physiology, 69(C), 65–73. DOI: 10.1016/j.jinsphys.2014.07.001

Azo’o, E. M., Fohouo, F. N. T., & Messi, J. 2011 Influence of the foraging entomofauna on okra (Abelmoschus esculentus) seed yields. Interna-tional Journal of Agriculture and Biology, 13, 761–765.

Bailey, S. F., Hargreaves, A. L., Hechtenthal, S. D., Laird, R. A., Latty, T. M., Reid, T. G., Teucher, A. C., & Tindall, J. R. 2007. Empty flowers as a pollination-enhancement strategy. Evolutionary Ecology Research, 9(8), 1245–1262.

Baker, H. G., & Baker, I. 1990. The predictive value of nectar chemistry to the recognition of pollinator types. Israel Journal of Botany, 39(1-2), 157–166. DOI: 10.1080/0021213X.1990.10677140

Barônio, G. J., Haleem, M. A., Marsaioli, A. J., & Torezan-Silingardi, H. M. 2017. Charac-terization of Malpighiaceae flower-visitor interactions in a Brazilian savannah: How do floral resources and visitor abundance change over time. Flora, 234, 126–134. DOI: 10.1016/j.flora.2017.07.015

Barônio, G. J., & Torezan-Silingardi, H. M. 2017. Temporal niche overlap and distinct bee ability to collect floral resources on three species of Brazilian Malpighiaceae. Apidologie, 48, 168–180. DOI: 10.1007/s13592-016-0462-6

Batson, J. D., Hoban, J. S., & Bitterman, M. E. 1992. Simultaneous conditioning in honeybees (Apis mellifera). Journal of Comparative Psychology, 106(2), 114. DOI: 10.1037/0735-7036.106.2.114

Benevides, C. R. 2006. Biologia floral e polinização de passifloraceae nativas e cultivadas na região norte Fluminense-RJ. Dissertação. Departa-mento de Ecologia e Recursos Naturais da Universidade Estadual do Norte Fluminense. p. 88.

Bernardello, G., Anderson, G. J., Lopez, S. P., Cleland, M. A., Stuessy, T. F., & Crawford, D. J. 1999. Reproductive biology of Lactoris fernandeziana (Lactoridaceae). American Jour-nal of Botany, 86(6), 829–840. DOI: 10.2307/2656704

Biesmeijer, J. C., Richter, J. A. P., Smeets, M., & Sommeijer, M. J. 1999. Niche differentiation in nectar-collecting stingless bees: the influence of morphology, oral choice and interference competition. Ecological Entomology, 24, 380–388. DOI: 10.1046/j.1365-2311.1999.00220.x

Bittrich, V., & Amaral, M. C. E. 1996. Flower Morphology and Pollination Biology of Some Clusia Species from the Gran Sabana (Venezuela). Kew Bulletin, 51(4), 681. DOI: 10.2307/4119722

Blüthgen, N., & Klein, A. M. 2011. Functional complementary and specialization: the role of biodiversity in plant-pollinator interactions. Basic and Applied Ecology, 12, 282–291. DOI: 10.1016/j.baae.2010.11.001

Bronstein, J. 1994. Conditional outcomes in mutualistic interactions. Trends in Ecology and Evolution, 9, 214–217. DOI: 10.1016/0169-5347(94)90246-1

Bronstein, J. L. 2001. The exploitation of mutua-lisms. Ecology Letters, 4(3), 277–287. DOI: 10.1046/j.1461-0248.2001.00218.x

Bronstein, J. L., Alarcón, R., & Geber, M. 2006. The evolution of plant-insect mutualisms. The New Phytologist, 172(3), 412–28. DOI: 10.1111/j.1469-8137.2006.01864.x

Buchmann, S. L. 1983. Buzz pollination in angiosperms. In: C. E. Jones, & R. J. Little (Eds.), Handbook of Experimental Pollination Biology. pp. 73-113. New York: Van Nostrand Reinhold

Company.

Buchmann, S. L. 1987. The Ecology of Oil Flowers and their Bees. Annual Review of Ecology and Systematics, 18, 343–369. DOI: 10.1146/annurev.es.18.110187.002015

Buchmann, S. L., & Hurley J. P. 1978. A Biophysical model for buzz pollination in Angiosperms. Journal of Theoretical Biology, 72(4), 639–657. DOI: 10.1016/0022-5193(78)90277-1

Canto, A., Pérez, R., Medrano, M., Castellanos, M. C., & Herrera, C. M. 2007. Intraplant variation in nectar sugar composition in two Aquilegia species (Ranunculaceae): contrasting patterns under field and greenhouse conditions. Annals of Botany, 99(4), 653–660. DOI: 10.1093/aob/mcl291

Cappellari, S.C., Haleem, M. A., Marsaioli, A. J., Tidon, R. & Simpson, B. B. 2011. Pterandra pyroidea: a case of pollination shift within Neotropical Malpighiaceae. Annals of Botany, 107, 1323–1334. DOI: 10.1093/aob/mcr084

Cappellari, S. C., Melo, G. A. R., Aguiar, A. J. C. & Neff, J. L. 2012. Floral oil collection by male Tetrapedia bees (Hymenoptera: Apidae: Tetrapediini). Apidologie, 43, 39–50. DOI: 10.1007/s13592-011-0072-2

Carvallo, G. O., & Medel, R. 2016. Heterospecific pollen transfer from an exotic plant to native plants: assessing reproductive consequences in an Andean grassland. Plant Ecology & Diversity, 9(2), 151–157. DOI: 10.1080/17550874.2016.1140243

Chauveau, O., Eggers, L., Souza-Chies, T. T., & Nadot, S. 2012. Oil-producing flowers within the Iridoideae (Iridaceae): evolutionary trends in the flowers of the New World genera. Annals of Botany, 110(3), 713–729. DOI: 10.1093/aob/mcs134

Cocucci, A.A., Séric, A., & Roig-Alsina, A. 2000. Oil-collecting structures in Tapinotaspidini: their diversity, function and probable origin. Mitteilungen der Münchner Entomol Gesellschaft, 90, 51–74.

Cocucci, A. A., & Vogel, S. 2001. Oil-producing flowers of Sisyrinchium species (Iridaceae) and their pollinators in southern South America. Flora, 196(1), 26–46. DOI: 10.1016/S0367-2530(17)30010-5

Corbet, S. A. 2003. Nectar sugar content: estimating standing crop and secretion rate in the field. Apidologie, 34(1), 1–10. DOI: 10.1051/apido:2002049

Cruden, R. W. 2000. Pollen grains: Why so many? Plant Systematics and Evolution, 222(1–4), 143–165. DOI: 10.1007/BF00984100

De la Barrera, E., & Nobel, P. S. 2004. Nectar: properties, floral aspects, and speculations on origin. Trends in Plant Science, 9, 65–69. DOI: 10.1016/j.tplants.2003.12.003

Daly, K., Smith, B., & Wright, G. 2006. Learning-Based Recognition and Discrimination of Floral Odors. In: N. Dudareva & E. Pichersky (Eds.), Biology of Floral Scent. pp. 263–295. CRC Press.

Delmas, C. E. L., Fort, T. L. C., Escaravage, N., & Pornon, A. 2016. Pollen transfer in fragmented plant populations: insight from the pollen loads of pollinators and stigmas in a mass-flowering species. Ecology and Evolution, 6(16), 5663–5673. DOI: 10.1002/ece3.2280

De Luca, P. A., & Vallejo-Marín, M. 2013. What’s the “buzz” about? The ecology and evolutionary significance of buzz-pollination. Current Opinion in Plant Biology, 16(4), 429–435. DOI: 10.1016/j.pbi.2013.05.002

Dressler, R. L. 1968. Pollination by euglossine bees. Evolution, 22(1), 202–210. DOI: 10.2307/2406664

Dressler, R. L. 1982. Biology of the orchid bees (Euglossini). Annual Review of Ecology and Systematics, 13(1), 373–394. DOI: 10.1146/annurev.es.13.110182.002105

Dumri, K., Seipold, L., Schmidt, J., Gerlach, G., Dötterl, S., Ellis, A. G., & Wessjohann, L. A. 2008. Non-volatile floral oils of Diascia spp. (Scrophulariaceae). Phytochemistry, 69(6), 1372–1383. DOI: 10.1016/j.phytochem.2007.12.

Dworschak K, & Blüthgen, N. 2010. Networks and dominance hierarchies: does interspecific aggression explain flower partitioning among stingless bees? Ecological Entomology, 35(2), 216–225. DOI: 10.1111/j.1365-2311.2010.01174.x

Eltz, T., Sager, A., & Lunau, K. 2005. Juggling with volatiles: exposure of perfumes by displaying male orchid bees. Journal of Comparative Physiology A, 191(7), 575–581. DOI: 10.1007/s00359-005-0603-2

Endress, P. K. 1994. Diversity and evolutionary biology of tropical flowers. Oxford, Pergamon Press. Furness: p. 511.

Evoy, W. H., & Jones, B. P. 1971. Motor patterns of male euglossine bees evoked by floral fragrances. Animal Behaviour, 19(3), 583–588. DOI:10.1016/S0003-3472(71)80115-X

Fenster, C. B., Armbruster, W. S., Wilson, P., Dudash, M. R., & Thomson, J. D. 2004. Pollination Syndromes and Floral Specialization. Annual Review of Ecology, Evolution, and Systematics, 35(1), 375–403. DOI: 10.1146/annurev.ecolsys.34.011802.132347

Ferreira, Q. I. X., & Araújo, F. P. 2016. Economia de pólen favorecida pela heteranteria em Desmocelis villosa (Melastomataceae). Rodriguésia, 67(2), 347–355. DOI: 10.1590/2175-7860201667206

Fisogni, A., Cristofolini, G., Rossi, M., & Galloni, M. 2011. Pollinator directionality as a response to nectar gradient: promoting outcrossing while avoiding geitonogamy. Plant Biology, 13(6), 848–856. DOI: 10.1111/j.1438-8677.2011.00453.x

Florian, E., Franschitz, A., Aguiar, A. J., Schönenberger, J., & Dötterl, S. 2017. A perfume-collecting male oil bee? Evidences of a novel pollination system involving Anthurium acutifolium (Araceae) and Paratetrapedia chocoensis (Apidae, Tapinotaspidini). Flora, 232, 7–15. DOI:10.1016/j.flora.2017.02.020.

Fonseca, L. C. N. da Rech, A. R., Bergamo, P. J., Gonçalves-Esteves, V., & Sazima, M. 2016. Heterospecific pollen deposition among plants sharing hummingbird pollinators in the Brazilian Atlantic Forest. Rodriguésia, 67(2), 335–345. DOI: 10.1590/2175-7860201667205

Fowler, R. E., Rotheray, E. L., & Goulson, D. 2016. Floral abundance and resource quality influence pollinator choice. Insect Conservation and Diversity, 9(6), 481–494. DOI: 10.1111/icad.12197

Forbers, H. O. 1882. Two Kinds of Stamens with Different Functions in the Same Flower. Nature, 26(669), 386–386. DOI: 10.1038/026386b0

Fumero-Cabán, J. J., & Meléndez-Ackerman, E. J. 2007. Relative pollination effectiveness of floral visitors of Pitcairnia angustifolia (Brome-liaceae). American Journal of Botany, 94(3), 419–424. DOI: 10.3732/ajb.94.3.419

Galetto, L. & Bernardello, G. 1996. Characteristics of Nectar Secretion by Lycium cestroides, L. ciliatum (Solanaceae), and Their Hybrid. Plant Species Biology, 11, 157–163. DOI: 10.1111/j.1442-1984.1996.tb00141.x

Galetto, L. & Bernardello, G. 2003. Nectar sugar composition in angiosperms from Chaco and Patagonia (Argentina): an animal visitor’s matter? Plant Systematics and Evolution, 238(1–4), 69–86. DOI: 10.1007/s00606-002- 0269-y

Galetto, L., & Bernardello, G. 2005. Nectar. In: A. Dafni, & P. Kevan (Eds.), Pollination ecology: a practical approach. p. 156–212. Cambridge, Ontario, Canada: Enviroquest Ltd.

Gastauer, M., Campos, L. A. O., & Wittmann, D. 2011. Handling sticky resin by stingless bees (Hymenoptera, Apidae). Revista Brasileira de Entomologia, 55(2), 234–240. DOI: 10.1590/S0085-56262011005000018

Gómez, J. M., Perfectti, F., Bosch, J., & Camacho, J. P. M. 2009. A geographic selection mosaic in a generalized plant–pollinator–herbivore system. Ecological Monographs, 79(2), 245–263. DOI: 10.1890/08-0511.1

Gumbert, A. 2000. Color choices by bumble bees (Bombus terrestris): innate preferences and generalization after learning. Behavioral Ecology and Sociobiology, 48(1), 36–43. DOI: 10.1007/s002650000213

Gustafsson, M. H. G., Winter, K., & Bittrich, V. 2007. Diversity, Phylogeny and Classification of Clusia. In: U. Lüttge (Ed.), Clusia. pp. 95–116. Berlin, Heidelberg: Springer Berlin Heidelberg.

Hanoteaux, S., Tielbörger, K., & Seifan, M. 2013. Effects of spatial patterns on the pollination success of a less attractive species. Oikos, 122(6), 867–880. DOI: 10.1111/j.1600-0706.2012.20801.x

Harder, L. D. & Barrett, S. C. H. 2006. Ecology and evolution of flowers. Oxford University Press, New York.

Hargreaves, A. L., Harder, L. D., & Johnson, S. D. 2009. Consumptive emasculation: the ecological and evolutionary consequences of pollen theft. Biological Reviews, 84(2), 259–276. DOI: 10.1111/j.1469-185X.2008.00074.x

Heil, M. 2011. Nectar: generation, regulation and ecological functions. Trends in Plant Science, 16(4), 191–200.

Herbert, E. W., & Shimanuki, H. 1978. Chemical Composition and Nutritive Value of Bee-Collected and Bee-Stored Pollen. Apidologie, 9(1), 33–40. DOI: 10.1051/apido:19780103

Herrera, C. M., García, I. M., & Pérez, R. 2008. Invisible floral larcenies: microbial communi-

ties degrade floral nectar of bumble bee-pollinated plants. Ecology, 89(9), 2369–2376. DOI: 10.1890/08-0241.1

Higashi, S., Ohara, M., Arai, H., & Matsuo, K. 1988. Robber-like pollinators: overwintered queen bumblebees foraging on Corydalis ambigua. Ecological Entomology, 13(4), 411–418. DOI: 10.1111/j.1365-2311.1988.tb00373.x

Holland, P. W. H. 2015. Observations on fragrance collection behaviour of euglossine bees (Hymenoptera, Apidae). Revista Brasileira de Entomologia, 59(1), 62–64. DOI: 10.1016/j.rbe.2015.02.008

Inouye, D. W. 1980. The Terminology of Floral Larceny. Ecology, 61(5), 1251–1253. DOI: 10.2307/1936841

Irwin, R. E., Bronstein, J. L., Manson, J. S. & Richardson, L. 2010. Nectar Robbing: Ecological and Evolutionary Perspectives. Annual Review in Ecology, Evolution and Systematics, 41, 271–292. DOI: 10.1146/annurev.ecolsys.110308.120330

Jesson, L. K., & Barrett, S. C. H. 2003. The Comparative Biology of Mirror‐Image Flowers. International Journal of Plant Sciences, 164(S5), S237–S249. DOI: 10.1086/378537

Justicia, J., Oltra, J. E., Barrero, A. F., Guadaño, A., González-Coloma, A., & Cuerva, J. M. 2005. Total synthesis of 3-Hydroxydrimanes mediated by Titanocene III - Evaluation of their antifeedant activity. European Journal of Organic Chemistry, 2005(4), 712–718. DOI: 10.1002/ejoc.200400634

Kaminski, A. C., & Absy, M. L. 2006. Bees visitors of three species of Clusia (Clusiaceae) flowers in Central Amazonia. Acta Amazonica, 36(2), 259–263. DOI: 10.1590/S0044-59672006000200016

Kimsey, L. S. 1980. The behaviour of male orchid bees (Apidae, Hymenoptera, Insecta) and the question of leks. Animal Behaviour, 28(4), 996–1004. DOI: 10.1016/S0003-3472(80)80088-1

Luo, Z., Zhang, D., & Renner, S. S. 2008. Why two kinds of stamens in buzz-pollinated flowers? Experimental support for Darwin’s division-of-labour hypothesis. Functional Ecology, 22(5), 794–800. DOI: 10.1111/j.1365-2435.2008.01444.x

Luo, Z.-L., Gu, L., & Zhang, D. X. 2009. Intrafloral differentiation of stamens in heterantherous flowers. Journal of Systematics and Evolution, 47(1), 43–56. DOI: 10.1111/j.1759-6831.2009.00002.x

Lunau, K., Piorek, V., Krohn, O., & Pacini, E. 2015. Just spines—mechanical defense of malvaceous pollen against collection by corbiculate bees. Apidologie, 46(2), 144–149. DOI: 10.1007/s13592-014-0310-5

Makino, T. T., Ohashi, K., & Sakai, S. 2007. How do floral display size and the density of surrounding flowers influence the likelihood of bumble bee revisitation to a plant? Functional Ecology, 21(1), 87–95. DOI: 10.1111/j.1365-2435.2006.01211.x

Martins, A. C., & Alves-dos-Santos, I. 2013. Floral-oil-producing Plantaginaceae species: geogra-phical distribution, pollinator rewards and interactions with oil-collecting bees. Biota Neotropica, 13(4), 77–89. DOI: 10.1590/S1676-06032013000400008

Martins, A. C., Aguiar, A. J. C., & Alves-dos-Santos, I. 2013. Interaction between oil-collecting bees and seven species of Plantaginaceae. Flora, 208(7), 401–411. DOI: 10.1016/j.flora.2013.07.001

Martins, A. C., Melo, G. A. R., & Renner, S. S. 2015. Gain and loss of specialization in two oil-bee lineages, Centris and Epicharis (Apidae). Evolution, 69(7), 1835–1844. DOI: 10.1111/evo.12689

Martins, F. M., Cunha-Neto, I. L., & Pereira, T. M. 2016. Floral morphology and anatomy of Dalechampia alata Klotzsch ex Baill. (Euphor-biaceae), with emphasis on secretory structures. Brazilian Journal of Biology, 76(1), 233–244. DOI: 10.1590/1519-6984.19514

McDade, L. A., & Kinsman, S. 1980. The impact of floral parasitism in two Neotropical Hummingbird-Pollinated plant species. Evolu-tion, 34(5), 944. DOI: 10.2307/2408000

Mello, M. A. R., Bezerra, E. L. S., & Machado, I. C. 2013. Functional Roles of Centridini Oil Bees and Malpighiaceae Oil Flowers in Biome-wide Pollination Networks. Biotropica, 45, 45–53. DOI: 10.1111/j.1744-7429.2012.00899.x

Michener, C. D. 2007. The Bees of the World. Johns Hopkins University Press, Baltimore. p: 913

Mickeliunas, L.; Pansarin, E.R. & Sazima, M. 2006. Biologia floral, melitofilia e influência de besouros Curculionidae no sucesso reprodutivo de Grobya amherstiae Lindl. (Orchidaceae: Cyrtopodiinae). Revista Brasileira de Botânica,

(2): 251-258.

Milet-Pinheiro, P., & Gerlach, G. 2017. Biology of the Neotropical orchid genus Catasetum: a historical review on floral scent chemistry and pollinators. Perspectives in Plant Ecology, Evolution and Systematics, 27, 23–34. DOI: 10.1016/j.ppees.2017.05.004

Mitko, L., Weber, M. G., Ramirez, S. R., Hedenström, E., Wcislo, W. T., & Eltz, T. 2016. Olfactory specialization for perfume collection in male orchid bees. The Journal of Experimental Biology, 219(10), 1467–1475. DOI: 10.1242/jeb.136754

Müller, H. 1881. Two Kinds of Stamens with Different Functions in the Same Flower. Nature, 24(614), 307–308. DOI: 10.1038/024307c0

Müller, F. 1883. Two Kinds of Stamens with Different Functions in the Same Flower. Nature, 27(694), 364–365. DOI: 10.1038/027364b0

Muth, F., Francis, J. S., & Leonard, A. S. 2016. Bees use the taste of pollen to determine which flowers to visit. Biology Letters, 12(7), 20160356. DOI: 10.1098/rsbl.2016.0356

Navarro, L. 2001. Reproductive biology and effect of nectar robbing on fruit production in Macleania bullata (Ericaceae). Plant Ecology, 152(1), 59–65. DOI: 10.1023/A:1011463520398

Neff, J. L. & Simpson, B. B. 1981. Oil-collecting structures in the Anthophoridae morphology, function and use in systematics. Journal of Kansas Entomological Society, 54, 95–123.

Neff, J. L. & Simpson, B. B. 2017. Vogel’s great legacy: The oil flower and oil-collecting bee syndrome. Flora, 232, 104–116. DOI: 10.1016/j.flora.2017.01.003

Nepi, M., von Aderkas, P., Wagner, R., Mugnaini, S., Coulter, A., & Pacini, E. 2009. Nectar and pollination drops: how different are they? Annals of Botany, 104(2), 205–219.

Ness, J. H. 2006. A mutualim’s indirect costs: the most aggressive plant bodyguards also deter pollinators. Oikos, 113, 506–514. DOI: 10.111/j.2006.0030-1299.14143.x

Nicholls, E., & Hempel de Ibarra, N. 2017. Assessment of pollen rewards by foraging bees. Functional Ecology, 31(1), 76–87. DOI: 10.1111/1365-2435.12778

Nicolson, S. W., & Nepi, M. 2005. Dilute nectar in dry atmospheres: Nectar secretion patterns in Aloe castanea (Asphodelaceae). International Journal of Plant Sciences, 166(2), 227–233. DOI: 10.1086/427616

Nicolson, S. W., & Thornburg, R. W. 2007. Nectar chemistry. In: S. W. Nicolson, M. Nepi, & E. Pacini (Eds.), Nectaries and Nectar. pp. 215–264. Dordrecht: Springer Netherlands.

Nunes, C. E. P., Gerlach, G., Bandeira, K. D. O., Gobbo-Neto, L., Pansarin, E. R., & Sazima, M. 2017. Two orchids, one scent? Floral volatiles of Catasetum cernuum and Gongora bufonia suggest convergent evolution to a unique pollination niche. Flora, 232, 207–216. DOI: 10.1016/j.flora.2016.11.016

Ohashi, K., Thomson, J. D., & D’Souza, D. 2007. Trapline foraging by bumble bees: IV. Optimization of route geometry in the absence of competition. Behavioural Ecology, 18, 1–11. DOI: 10.1093/beheco/arl053

Ohashi, K., Leslie, A., & Thomson, J. D. 2008. Trapline foraging by bumble bees: V. Effects of experience and priority on competitive performance. Behavioural Ecology, 19, 936–948. DOI: 10.1093/beheco/arn048

Ohashi, K., & Thomson, J. D. 2013. Trapline foraging by bumble bees: VI. Behavioral alterations under speed-accuracy trade-offs. Behavioural Ecology, 24, 182–189. DOI: 10.1093/beheco/ars152

Ohashi, K., Leslie, A., & Thomson, J. D. 2013. Trapline foraging by bumble bees: VII. Adjustments for foraging success following competitor removal. Behavioural Ecology, 24, 768–778. DOI: 10.1093/beheco/ars200

Pellmyr, O. 2002. Pollination by animals. In: C. M. Herrera, & O. Pellmyr (Eds.), Plant animal interactions: an evolutionary approach. pp. 313. Oxford: Blackwell Science Ltda.

Peruquetti, R. C. 2000. Function of Fragrances Collected by Euglossini Males (Hymenoptera: Apidae). Entomologia Generalis 25(1), 33–37.

Petanidou, T., Van Laere, A., N Ellis, W., & Smets, E. 2006. What shapes amino acid and sugar composition in Mediterranean floral nectars? Oikos, 115(1), 155–169. DOI: 10.1111/j.2006.0030-1299.14487.x

Piechulla, B., Effmert, U., Rohrbeck, D., & Buss, D. 2006. Localization of the synthesis and emission of scent compounds within the flower. In: N. Dudareva, & E. Pichersky (Eds.), Biology of floral scent. pp. 105–124. Boca Raton: CRC Press,

Taylor & Francis Group.

Porto, A. L. M., Machado, S. M. F., de Oliveira, C. M. A., Bittrich, V., Amaral, M. do C. E., & Marsaioli, A. J. 2000. Polyisoprenylated benzophenones from Clusia floral resins. Phytochemistry, 55(7), 755–768. DOI: 10.1016/S0031-9422(00)00292-2

Pichersky, E., & Dudareva, N. 2006. Biology of Floral Scent. CRC Press. p. 360. DOI: 10.1201/9781420004007

Pyke, G. H. 2016. Plant-pollinator Co-evolution: It’s time to reconnect with Optimal Foraging Theory and Evolutionarily Stable Strategies. Perspectives in Plant Ecology, Evolution and Systematics, 19, 70–76. DOI: 10.1016/j.ppees.2016.02.004

Rech, A. R., Agostini, K., Oliveira, P. E., & Machado, I. C. 2014. Biologia da polinização. Editora Projeto Cultural, Rio de Janeiro: p. 524.

Reis, M. G., Faria, A. D. de, Bittrich, V., Amaral, M. do C. E., & Marsaioli, A. J. 2000. The chemistry of flower rewards - Oncidium (Orchidaceae). Journal of the Brazilian Chemical Society, 11(6), 600–608. DOI: 10.1590/S0103-50532000000600008

Renner, S. S., & Schaefer, H. 2010. The evolution and loss of oil-offering flowers: new insights from dated phylogenies for angiosperms and bees. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1539), 423–435. DOI: 10.1098/rstb.2009.0229

Riffell, J. A., Shlizerman, E., Sanders, E., Abrell, L., Medina, B., Hinterwirth, A. J., & Kutz, J. N. 2014. Flower discrimination by pollinators in a dynamic chemical environment. Science, 344(6191), 1515–1518. DOI: 10.1126/science.1251041

Rocha-Filho, L. C., Krug, C., Silva, C. I., & Garófalo, C. A. 2012. Floral Resources Used by Euglossini Bees (Hymenoptera: Apidae) in Coastal Ecosystems of the Atlantic Forest. Psyche: A Journal of Entomology, 2012, 1–13. DOI: 10.1155/2012/934951

Roulston, T. H., Cane, J. H., & Buchmann, S. L. 2000. What Governs Protein Content of Pollen: Pollinator Preferences, Pollen – Pistil Interactions, or Phylogeny? Ecological Monographs, 70(4), 617–643. DOI: 10.1890/0012-9615

Roubik, D. W. 1982. The Ecological Impact of Nectar-Robbing Bees and Pollinating Hummingbirds on a Tropical Shrub. Ecology, 63(2), 354–360. DOI: 10.2307/1938953

Russell, A. L., Buchmann, S. L., & Papaj, D. R. 2017. How a generalist bee achieves high efficiency of pollen collection on diverse floral resources. Behavioral Ecology, 28(4), 991–1003. DOI: 10.1093/beheco/arx058

Rüttgers, A., Griebel, M., Pastrik, L., Schmied, H., Wittmann, D., Scherrieble, A., Dinkelmann, A., & Stegmaier, T. 2015. Simulation of the oil storage process in the scopa of specialized bees. Computers & Fluids, 119, 115–130. DOI: 10.1016/j.compfluid.2015.06.029

Sá-Haiad, B., Silva, C. P., Paula, R. C. V., Rocha, J. F., & Machado, S. R. 2015. Androecia in two Clusia species: development, structure and resin secretion. Plant Biology, 17(4), 816–824. DOI: 10.1111/plb.12314

Sáez, A., Morales, C. L., Ramos, L. Y., & Aizen, M. A. 2014. Extremely frequent bee visits increase pollen deposition but reduce drupelet set in raspberry. Journal of Applied Ecology, 51(6), 1603–1612. DOI: 10.1111/1365-2664.12325

Salgado-Labouriau, M. L. 1973. Contribuição à Palinologia dos Cerrados. Academia Brasileira de Ciências, Rio de Janeiro. 291 p.

Santos, A. O. R. 2013. Polinizadores potenciais de Lycopersicon eculentum Mill. (Solanaceae) em áreas de cultivo aberto. Dissertação de Mestrado. Universidade Federal de Uberlândia. p. 21.

Santos, J. S. dos, Athiê-Souza, S. M., Almeida, N. M., & Castro, C. C. de. 2016. Biologia reprodutiva e flores de óleo em Cipura paludosa (Iridaceae). Rodriguésia, 67(2), 387–393. DOI: 10.1590/2175-7860201667210

Sazima, M., & Sazima, I. 1989. Oil-gathering bees visit flowers of eglandular morphs of the Oil-producing Malpighiaceae. Botanica Acta, 102(1), 106–111. DOI: 10.1111/j.1438-8677.1989.tb00073.x

Sazima, M., Vogel, S., Cocucci, A., & Hausner, G. 1993. The perfume flowers of Cyphomandra (Solanaceae): Pollination by euglossine bees, bellows mechanism, osmophores, and volatiles. Plant Systematics and Evolution, 187(1), 51–88, DOI:10.1007/BF00994091

Schemske, D. W., & R. Lande. 1984. Fragrance collection and territorial display by male orchid bees. Animal Behaviour 32, 935–937. DOI: 10.1016/S0003-3472(84)80184-0

Schiestl, F. P., Ayasse, M., Paulus, H. F., Löfstedt, C., Hansson, B. S., Ibarra, F., & Francke, W. 1999. Orchid pollination by sexual swindle. Nature, 399(6735), 421–421.DOI: 10.1038/20829

Schiestl, F. P., & Ayasse, M. 2002. Do changes in floral odor cause speciation in sexually deceptive orchids? Plant Systematics and Evolution, 234(1), 111–119. DOI:10.1007/s00606-002-0187-z

Schiestl, F. P., Peakall, R., Mant, J. G., Ibarra, F., Schulz, C., Franke, S., & Francke, W. 2003. The chemistry of sexual deception in an orchid-wasp pollination system. Science, 302(5644), 437–438. DOI:10.1126/science.1087835

Schiestl, F. P., & Johnson, S. D. 2013. Pollinator-mediated evolution of floral signals. Trends in Ecology & Evolution, 28(5), 307–315. DOI: 10.1016/j.tree.2013.01.019

Schlindwein, C., Wittmann, D., Martins, C. F., Hamm, A., Siqueira, J. A., Schiffler, D., & Machado, I. C. 2005. Pollination of Campanula rapunculus L. (Campanulaceae): How much pollen flows into pollination and into reproduction of oligolectic pollinators? Plant Systematics and Evolution, 250(3–4), 147–156. DOI: 10.1007/s00606-004-0246-8

Sigrist, M. R., & Sazima, M. 2004. Pollination and reproductive biology of twelve species of neotropical Malpighiaceae: Stigma morphology and its implications for the breeding system. Annals of Botany, 94, 33–41. DOI: 10.1093/aob/mch108

Silvério, A., Nadot, S., Souza-Chies, T. T., & Chauveau, O. 2012. Floral rewards in the tribe Sisyrinchieae (Iridaceae): oil as an alternative to pollen and nectar? Sexual Plant Reproduction, 25(4), 267–279. DOI: 10.1007/s00497-012-0196-1

Simpson, B. B., & Neff, J. L. 1981. Floral reward: Alternatives to pollen and nectar. Annals of the Missouri Botanical Garden, 68(2), 301. DOI: 10.2307/2398800

Szczęsna, T. 2007. Concentration of Selected Elements in Honeybee-Collected Pollen. Journal of Apicultural Science, 51(1), 5–13.

Tan, K., & Nishida, R. 2000. Mutual Reproductive Benefits Between a Wild Orchid, Bulbophyllum patens, and Bactrocera Fruit Flies via a Floral Synomone. Journal of Chemical Ecology, 26(2), 533–546. DOI: 10.1023/A:1005477926244

Teck, O. P., & Hong, T. K. 2012. Three species of Bulbophyllum section Racemosae pollinated by Drosophila flies. Malesian Orchid Journal, 9, 1–6.

Temeles, E. J., & Pan, I. L. 2002. Effect of nectar robbery on phase duration, nectar volume, and pollination in a protandrous plant. Interna-tional Journal of Plant Science, 163(5), 803–808. DOI: 10.1086/342033

Thien L. B., Azuma H., & Kawano S. 2000. New perspectives on the pollination biology of basal angiosperms. International Journal of Plant Sciences, 161(S6), S225–S235. DOI: 10.1086/317575

Thompson, J. N., & Fernandez, C. C. 2006. Temporal dynamics of antagonism and mutualism in a geographically variable plant-insect interaction. Ecology, 87(1), 103–112. DOI: 10.1890/05-0123

Torezan-Silingardi, H. M., & Del-Claro, K. 1998. Behaviour of visitors and reproductive biology of Campomanesia pubescens (Myrtaceae) in Cerrado vegetation. Ciência Hoje, 50, 281–284.

Vallejo-Marín, M., Manson, J. S., Thomson, J. D., & Barrett, S. C. H. 2009. Division of labour within flowers: Heteranthery, a floral strategy to reconcile contrasting pollen fates. Journal of Evolutionary Biology, 22(4), 828–839. DOI: 10.1111/j.1420-9101.2009.01693.x

Varassin, I. 2001. The role of nectar production, flower pigments and odour in the pollination of four species of Passiflora (Passifloraceae) in south-eastern Brazil. Botanical Journal of the Linnean Society, 136(2), 139–152. DOI: 10.1006/bojl.2000.0438

Varassin, I. G., & Amaral-Neto, L. P. do. 2014. Atrativos. In: A. R. Rech, K. Agostini, P. E. A. M. Oliveira, & I. C. Machado (Eds.), Biologia da Polinização. pp. 185–211. Rio de Janeiro: Editora Projeto Cultural

Vázquez, D. P., Lomáscolo, S. B., Maldonado, M. B., Chacoff, N. P., Dorado, J., Stevani, E. L., & Vitale, N. L. 2012. The strength of plant–pollinator interactions. Ecology, 93(4), 719–725. DOI: 10.1890/11-1356.1

Vilela, A. A., Torezan-Silingardi, H. M., & Del-Claro, K. 2014. Conditional outcomes in ant–plant–herbivore interactions influenced by sequential flowering. Flora - Morphology, Distribution, Functional Ecology of Plants, 209(7), 359–366. DOI: 10.1016/j.flora.2014.04.004

Vinson, S. B., Williams, H. J., Frankie, G. W., & Shrum, G. 1997. Floral Lipid Chemistry of Byrsonima crassifolia (Malpigheaceae) and a Use of Floral Lipids by Centris Bees (Hymenoptera: Apidae). Biotropica, 29(1), 76–83. DOI: 10.1111/j.1744-7429.1997.tb00008.x

Vogel, S. 1974. Olblumen und olsammelnde Bienen. Tropical und Subtropical Pflanzenwelt, 7, 285–547. DOI: 10.1002/fedr.19770880110

Vogel, S. 1988. The oil-bee oil-flower relationships - parallelism and other aspects of their evolution in space and time. Zeitschrift fur Zoologische Systematik und Evolutionsfors-chung, 26, 341–362.

Vogel, S. 1990. History of the Malpighiaceae in the light of pollination ecology. Memoirs of the New York Botanical Garden, 55, 130–142.

Vogel, S., & Cocucci, A. 1995. Pollination of Basistemon (Scrophulariaceae) by oil-collecting bees in Argentina. Flora, 190, 353–363.

Vogel, S., & Machado, I. C. 1991. Pollination of four sympatric species of Angelonia (Scrophu-lariaceae) by oil-collecting bees in NE. Brazil. Plant Systematics and Evolution, 178(3–4), 153–178. DOI: 10.1007/BF00937962

Waser, N. M. 1978. Competition for Hummingbird Pollination and Sequential Flowering in Two Colorado Wildflowers. Ecology, 59(5), 934. DOI: 10.2307/1938545

Waser, N. M. 1986. Flower Constancy: Definition, Cause, and Measurement. The American Naturalist, 127(5), 593–603. DOI: 10.1086/284507

Waser, N. M. & Real, L. A. 1979. Effective mutualism between sequentially flowering plant species. Nature 281:670–672. DOI: 10.1038/281670a0

Westerkamp, C. 1996. Pollen in bee-flower relations - Some considerations on melittophily. Botanica Acta, 109(4), 325–332. DOI: 10.1111/j.1438-8677.1996.tb00580.x

Whitten, W. M., Young, A. M., & Williams, N. H. 1989. Function of glandular secretions in fragrance collection by male euglossine bees (Apidae: Euglossini). Journal of Chemical Ecology, 15(4), 1285–1295. DOI: 10.1007/BF01014830

Williams, N. H., & Dressler, R. L. 1976. Euglossine pollination of Spathiphyllum (Araceae). Selbyana, 1(4), 349–356

Wilmsen, S., Gottlieb, R., Junker, R. R., & Lunau, K. 2017. Bumblebees require visual pollen stimuli to initiate and multimodal stimuli to complete a full behavioral sequence in close-range flower orientation. Ecology and Evolution, 7(5), 1384–1393. DOI: 10.1002/ece3.2768

Wolowski, M., & Freitas, L. 2010. Sistema reprodutivo e polinização de Senna multijuga (Fabaceae) em Mata Atlântica Montana. Rodriguésia, 61(2), 167–179. DOI: 10.1590/2175-7860201061202

Wright, G. A., Baker, D. D., Palmer, M. J., Stabler, D., Mustard, J. A., Power, E. F., & Stevenson, P. C. 2013. Caffeine in floral nectar enhances a pollinator's memory of reward. Science, 339(6124), 1202–1204. DOI:10.1126/science.1228806

Zambon, V. & Agostini K. 2017. Polimorfismo floral e suas implicações em sistemas sexuais: o caso de Solanum melongena (Solanaceae). Rodrigué-sia, 68(4), 1187–1199. DOI: 10.1590/2175-7860201768403

Zhang, Y.-W., Robert, G. W., Wang, Y., & Guo, Y.-H. 2007. Nectar robbing of a carpenter bee and its effects on the reproductive fitness of Glechoma longituba (Lamiaceae). Plant Ecology, 193(1), 1–13. DOI: 10.1007/s11258-006-9244-y

Zhang, Y.-W., Zhao, J.-M., & Inouye, D. W. 2014. Nectar thieves influence reproductive fitness by altering behaviour of nectar robbers and legitimate pollinators in Corydalis ambigua (Fumariaceae). Journal of Ecology, 102(1), 229–237. DOI: 10.1111/1365-2745.12166

Published

2018-12-18