Adam Douglas Canning, Russell Death


The pervading physical habitat differences between lakes, rivers, and estuaries should result in structural and thus stability differences in food webs in these three different aquatic habitats. We compared 24 metrics of food web structure and the robustness to loss of both well-connected and random species of 18 well-resolved food webs from six lakes, six rivers, and six estuaries. Robustness measures the proportion of species that need to be removed for 50% of all species to be lost/disconnected. Riverine food webs had lower neighborhood clustering and greater variability in prey vulnerability than estuaries and lakes. Typically, rivers experience physical disturbance relatively more frequently and with greater severity than estuaries and lakes. Disturbance may drive rivers to have lower clustering and have greater proportions of early successional taxa that are mobile and have little armor, and hence greater variability in their vulnerability to predation. Despite the observed differences in food web structure, these did not drive differences in modelled food web robustness between the three habitats. Similarities in robustness may be a result of freshwater organisms having similar body-size ratios between predator and prey/resource taxa thereby driving similar link distributions.


allometric scaling; aquatic ecosystem; clustering coefficient; ecological networks; stability

Full Text:



Allan, J. D. 2004. Landscapes and riverscapes: The influence of land use on stream ecosystems. Annual Review of Ecology Evolution and Systematics, 35, 257–284.

Almeida-Neto, M., Guimaraes, P., Guimarães, P. R., Loyola, R. D., & Ulrich, W. 2008. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos, 117(8), 1227–1239.

Anderson, M., Gorley, R. N., & Clarke, R. K. 2008. Permanova+ for Primer: Guide to Software and Statistical Methods.

Atlas, W. I., & Palen, W. J. 2014. Prey vulnerability limits top-down control and alters reciprocal feedbacks in a subsidized model food web. PLOS ONE, 9(1), e85830. DOI: 10.1371/journal.pone.0085830

Badcock, R. M. 1949. Studies in stream life in tributaries of the Welsh Dee. Journal of Animal Ecology, 18(2), 193–208. DOI: 10.2307/1599

Baird, D., Luczkovich, J., & Christian, R. R. 1998. Assessment of spatial and temporal variability in ecosystem attributes of the St Marks National Wildlife Refuge, Apalachee Bay, Florida. Estuarine, Coastal and Shelf Science, 47(3), 329–349. DOI: 10.1006/ecss.1998.0360

Belgrano, A., Scharler, U. M., Dunne, J. A., & Ulanowicz, R. (eds.) 2004. Aquatic food webs : An ecosystem approach, Oxford University Press: Oxford.

Bengtsson, J. 1994. Confounding variables and independent observations in comparative analyses of food webs. Ecology, 75(5), 1282–1288. DOI: 10.2307/1937453

Biggs, B. J. F., & Close, M. E. 1989. Periphyton biomass dynamics in gravel bed rivers: the relative effects of flows and nutrients. Freshwater Biology, 22(2), 209–231. DOI: 10.1111/j.1365-2427.1989.tb01096.x

Brezonik, P. L., Baker, L. A., Eaton, J. R., Frost, T. M., Garrison, P., Kratz, T. K., Magnuson, J. J., Rose, W. J., Shephard, B. K., Swenson, W. A., Watras, C. J., & Webster, K. E. 1986. Experimental acidification of Little Rock Lake, Wisconsin. Water, Air, and Soil Pollution, 31(1-2), 115–121. DOI: 10.1007/bf00630825

Briand, F. 1985. Structural singularities of freshwater food webs. Verhandlungen der Internationalen Vereinigung für theoretische und angewandte Limnologie, 22, 3356–3364.

Briand, F., & Cohen, J. E. 1984. Community food webs have scale-invariant structure. Nature, 307, 264–267.

Brose, U. 2010. Body-mass constraints on foraging behaviour determine population and food-web dynamics. Functional Ecology, 24(1), 28–34. DOI: 10.1111/j.1365-2435.2009.01618.x

Brose, U., Jonsson, T., Berlow, E. L., Warren, P., Banasek-Richter, C., Bersier, L.-F., Blanchard, J. L., Brey, T., Carpenter, S. R., Blandenier, M.-F. C., Cushing, L., Dawah, H. A., Dell, T., Edwards, F., Harper-Smith, S., Jacob, U., Ledger, M. E., Martinez, N. D., Memmott, J., Mintenbeck, K., Pinnegar, J. K., Rall, B. C., Rayner, T. S., Reuman, D. C., Ruess, L., Ulrich, W., Williams, R. J., Woodward, G., & Cohen, J. E. 2006b. Consumer-resource body size relationships in natural food webs. Ecology, 87(10), 2411–2417. DOI: 10.1890/0012-9658(2006)87[2411:cbrinf];2

Brose, U., Williams, R. J., & Martinez, N. D. 2006a. Allometric scaling enhances stability in complex food webs. Ecology Letters, 9(11), 1228–1236.

Camacho, J., Guimerà, R., & Nunes Amaral, L. A. 2002. Robust patterns in food web structure. Physical Review Letters, 88(22), 228102.

Canning, A. D., & Death, R. G. 2017. Trophic cascade direction and flow determine network flow stability. Ecological Modelling, 355, 18–23. DOI: 10.1016/j.ecolmodel.2017.03.020

Canning, A. D., & Death, R. G. 2018. Relative ascendency predicts food web robustness. Ecological Research, 33(5), 873–878. DOI: 10.1007/s11284-018-1585-1

Canning, A. D., Death, R. G., & Gardner, E. M. 2018. The effect of forest canopy and flood disturbance on New Zealand stream food web structure and robustness. Austral Ecology, 43(3), 352–358. DOI: doi:10.1111/aec.12573

Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., & Smith, V. H. 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 8(3), 559-568. DOI: 10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2

Cattin, M.-F., Bersier, L.-F., Banasek-Richter, C., Baltensperger, R., & Gabriel, J.-P. 2004. Phylogenetic constraints and adaptation explain food-web structure. Nature, 427(6977), 835–839.

Clarke, K., & Gorley, R. 2006. PRIMER v6: User Manual/Tutorial, Plymouth, UK, PRIMER-E.

Clarke, K. R. 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18(1), 117–143. DOI: 10.1111/j.1442-9993.1993.tb00438.x

Collier, K. J., & Grainger, N. P. J. 2015. New Zealand invasive fish management handbook. New Zealand: LERNZ.

Death, R. G. 2008. The effect of floods on aquatic invertebrate communities. In: J. Lancaster, & R. A. Briers (Eds.), Aquatic insects: challenges to populations. pp. 103–121. Oxforshire: CABI International.

Death, R. G., Fuller, I. C., & Macklin, M. G. 2015. Resetting the river template: the potential for climate-related extreme floods to transform river geomorphology and ecology. Freshwater Biology, 60(12), 2477–2496. DOI: 10.1111/fwb.12639

Death, R. G., & Winterbourn, M. J. 1995. Diversity patterns in stream benthic invertebrate communities: the influence of habitat stability. Ecology, 76(5), 1446–1460.

Devictor, V., Julliard, R., & Jiguet, F. 2008. Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos, 117(4), 507–514.

Dewson, Z. S., James, A. B. W., & Death, R. G. 2007. A review of the consequences of decreased flow for instream habitat and macroinvertebrates. Journal of the North American Benthological Society, 26, 401–415.

Digel, C., Riede, J. O., & Brose, U. 2011. Body sizes, cumulative and allometric degree distributions across natural food webs. Oikos, 120(4), 503–509. DOI: 10.1111/j.1600-0706.2010.18862.x

Donohue, I., Hillebrand, H., Montoya, J. M., Petchey, O. L., Pimm, S. L., Fowler, M. S., Healy, K., Jackson, A. L., Lurgi, M., McClean, D., O'Connor, N. E., O'Gorman, E. J., & Yang, Q. 2016. Navigating the complexity of ecological stability. Ecology Letters, 19(9), 1172–1185. DOI: 10.1111/ele.12648

Dudgeon, D. 2010. Prospects for sustaining freshwater biodiversity in the 21st century: linking ecosystem structure and function. Current Opinion in Environmental Sustainability, 2(5–6), 422–430. DOI: 10.1016/j.cosust.2010.09.001

Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z. I., Knowler, D. J., Leveque, C., Naiman, R. J., Prieur-Richard, A. H., Soto, D., Stiassny, M. L. J., & Sullivan, C. A. 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews, 81(2), 163–182.

Dunne, J. A., Brose, U., Williams, R. J., & Martinez, N. D. 2005. Modeling food web dynamics: Complexity-stability implications. In: A. Belgrano, U. M. Scharler, J. Dunne, & R. E. Ulanowicz (Eds.), Aquatic food webs: an ecosystem approach. pp. 117–129. Oxford: Oxford University Press.

Dunne, J. A., Williams, R. J., & Martinez, N. D. 2002a. Network structure and biodiversity loss in food webs: Robustness increases with connectance. Ecology Letters, 5(4), 558–567.

Dunne, J. A., Williams, R. J., & Martinez, N. D. 2002b. Food-web structure and network theory: the role of connectance and size. Proceedings of the National Academy of Sciences, 99(20), 12917–12922.

Estrada, E. 2007. Characterization of topological keystone species: Local, global and “meso-scale” centralities in food webs. Ecological Complexity, 4(1–2), 48–57. DOI: 10.1016/j.ecocom.2007.02.018

Fedor, A., & Vasas, V. 2009. The robustness of keystone indices in food webs. Journal of Theoretical Biology, 260(3), 372–378. DOI:

Freedman, H., & So, J. 1985. Global stability and persistence of simple food chains. Mathematical Biosciences, 76(1), 69–86.

Fryer, G. 1959. The trophic interrelationships and ecology of some littoral communities of Lake Nyasa with especial reference to the fishes, and a discussion of the evolution of a group of rock-frequenting Cichlidae. Journal of Zoology, 132(2), 153–281.

Fuller, R. L., & Rand, P. S. 1990. Influence of substrate type on vulnerability of prey to predacious aquatic insects. Journal of the North American Benthological Society, 9(1), 1–8. DOI: doi:10.2307/1467928

Havens, K. 1992. Scale and structure in natural food webs. Science, 257(5073), 1107–1109.

Hechinger, R. F., Lafferty, K. D., McLaughlin, J. P., Fredensborg, B. L., Huspeni, T. C., Lorda, J., Sandhu, P. K., Shaw, J. C., Torchin, M. E., Whitney, K. L., & Kuris, A. M. 2011. Food webs including parasites, biomass, body sizes, and life stages for three California/Baja California estuaries. Ecology, 92(3), 791–791. DOI: 10.1890/10-1383.1

Heckmann, L., Drossel, B., Brose, U., & Guill, C. 2012. Interactive effects of body-size structure and adaptive foraging on food-web stability. Ecology Letters, 15(3), 243–250. DOI: 10.1111/j.1461-0248.2011.01733.x

Ives, A. R., & Cardinale, B. J. 2004. Food-web interactions govern the resistance of communities after non-random extinctions. Nature, 429(6988), 174–177.

Jake Vander Zanden, M., & Fetzer, W. W. 2007. Global patterns of aquatic food chain length. Oikos, 116(8), 1378–1388. DOI: 10.1111/j.0030-1299.2007.16036.x

Jenkins, B., Kitching, R. L., & Pimm, S. L. 1992. Productivity, disturbance and food web structure at a local spatial scale in experimental container habitats. Oikos, 65(2), 249–255. DOI: 10.2307/3545016

Kartascheff, B., Heckmann, L., Drossel, B., & Guill, C. 2010. Why allometric scaling enhances stability in food web models. Theoretical Ecology, 3(3), 195–208. DOI: 10.1007/s12080-009-0063-3

Kitahara, M., Sei, K., & Fujii, K. 2000. Patterns in the structure of grassland butterfly communities along a gradient of human disturbance: further analysis based on the generalist/specialist concept. Population Ecology, 42(2), 135–144. DOI: 10.1007/PL00011992

Koslucher, D. G., & Minshall, G. W. 1973. Food habits of some benthic invertebrates in a northern cool-Desert stream (Deep Creek, Curlew Valley, Idaho-Utah). Transactions of the American Microscopical Society, 9 (3), 441–452. DOI: 10.2307/3225248

Lake, P. 2000. Disturbance, patchiness, and diversity in streams. Journal of the North American Benthological Society, 19(4), 573–592.

Leps, M., Tonkin, J. D., Dahm, V., Haase, P., & Sundermann, A. 2015. Disentangling environmental drivers of benthic invertebrate assemblages: The role of spatial scale and riverscape heterogeneity in a multiple stressor environment. Science of the Total Environment, 536, 546–556. DOI: 10.1016/j.scitotenv.2015.07.083

Marks, J. C., Power, M. E., & Parker, M. S. 2000. Flood disturbance, algal productivity, and interannual variation in food chain length. Oikos, 90(1), 20–27.

Martinez, N. D. 1994. Scale-dependent constraints on food-web structure. American Naturalist, 144(6), 935–953.

Marvier, M., Kareiva, P., & Neubert, M. G. 2004. Habitat destruction, fragmentation, and disturbance promote invasion by habitat generalists in a multispecies metapopulation. Risk Analysis, 24(4), 869–878. DOI: 10.1111/j.0272-4332.2004.00485.x

Matthaei, C. D., Piggott, J. J., & Townsend, C. R. 2010. Multiple stressors in agricultural streams: interactions among sediment addition, nutrient enrichment and water abstraction. Journal of Applied Ecology, 47(3), 639–649. DOI: 10.1111/j.1365-2664.2010.01809.x

May, R. M. 2006. Network structure and the biology of populations. Trends in Ecology & Evolution, 21(7), 394–399. DOI: 10.1016/j.tree.2006.03.013

McDowell, R. W., van der Weerden, T. J., & Campbell, J. 2011. Nutrient losses associated with irrigation, intensification and management of land use: A study of large scale irrigation in North Otago, New Zealand. Agricultural Water Management, 98(5), 877–885. DOI: 10.1016/j.agwat.2010.12.014

McHugh, P. A., McIntosh, A. R., & Jellyman, P. G. 2010. Dual influences of ecosystem size and disturbance on food chain length in streams. Ecology Letters, 13(7), 881–890.

Milne, H., & Dunnet, G. 1972. Standing crop, productivity and trophic relations of the fauna of the Ythan estuary. The Estuarine Environment, 86–106.

Montoya, J. M., & Sole, R. V. 2002. Small World Patterns in Food Webs. Journal of Theoretical Biology, 214(3), 405–412. DOI: 10.1006/jtbi.2001.2460

Moreira, F., Assis, C. A., Almeida, P. R., Costa, J. L., & Costa, M. J. 1992. Trophic relationships in the community of the upper Tagus estuary (Portugal): A preliminary approach. Estuarine, Coastal and Shelf Science, 34(6), 617–623. DOI: 10.1016/S0272-7714(05)80066-6

Mougi, A., & Kondoh, M. 2016. Food-web complexity, meta-community complexity and community stability. Scientific Reports, 6, 24478. DOI: 10.1038/srep24478

Navia, A. F., Cortés, E., Jordán, F., Cruz-Escalona, V. H., & Mejía-Falla, P. A. 2012. Changes to marine trophic networks caused by fishing. In: A. Mahamane (Ed.), Diversity of Ecosystems. InTech.

O’Gorman, E. J., Jacob, U., Jonsson, T., & Emmerson, M. C. 2010. Interaction strength, food web topology and the relative importance of species in food webs. Journal of Animal Ecology, 79(3), 682–692. DOI: 10.1111/j.1365-2656.2009.01658.x

Olden, J. D., Kennard, M. J., Leprieur, F., Tedesco, P. A., Winemiller, K. O., & García-Berthou, E. 2010. Conservation biogeography of freshwater fishes: recent progress and future challenges. Diversity and Distributions, 16(3), 496–513.

Palmer, M. A., Reidy Liermann, C. A., Nilsson, C., Floumlrke, M., Alcamo, J., Lake, P. S., & Bond, N. 2008. Climate change and the world's river basins: anticipating management options. Frontiers in Ecology and the Environment, 6(2), 81–89.

Percival, E., & Whitehead, H. 1929. A quantitative study of the fauna of some types of stream-bed. Journal of Ecology, 17(2), 282–314. DOI: 10.2307/2256044

Petchey, O. L., Downing, A. L., Mittelbach, G. G., Persson, L., Steiner, C. F., Warren, P. H., & Woodward, G. 2004. Species loss and the structure and functioning of multitrophic aquatic systems. Oikos, 104(3), 467–478. DOI: 10.1111/j.0030-1299.2004.13257.x

Piggott, J. J., Lange, K., Townsend, C. R., & Matthaei, C. D. 2012. Multiple Stressors in Agricultural Streams: A Mesocosm Study of Interactions among Raised Water Temperature, Sediment Addition and Nutrient Enrichment. Plos One, 7(11). DOI: 10.1371/journal.pone.0049873

Poff, N. L., & Zimmerman, J. K. H. 2010. Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshwater Biology, 55(1), 194–205. DOI: 10.1111/j.1365-2427.2009.02272.x

Post, D. M. 2002. The long and short of food-chain length. Trends in Ecology & Evolution, 17(6), 269–277. DOI: 10.1016/S0169-5347(02)02455-2

Post, D. M., Pace, M. L., & Hairston, N. G. 2000. Ecosystem size determines food-chain length in lakes. Nature, 405(6790), 1047–1049.

Power, M., Dietrich, W., & Finlay, J. 1996. Dams and downstream aquatic biodiversity: Potential food web consequences of hydrologic and geomorphic change. Environmental management, 20(6), 887–895. DOI: 10.1007/bf01205969

Power, M. E., Marks, J. C., & Parker, M. S. 1992. Variation in the Vulnerability of Prey to Different Predators: Community-Level Consequences. Ecology, 73(6), 2218–2223. DOI: 10.2307/1941469

R Development Core Team 2012. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

Resh, V. H., Brown, A. V., Covich, A. P., Gurtz, M. E., Li, H. W., Minshall, G. W., Reice, S. R., Sheldon, A. L., Wallace, J. B., & Wissmar, R. C. 1988. The Role of Disturbance in Stream Ecology. Journal of the North American Benthological Society, 7(4), 433–455. DOI: 10.2307/1467300

Ricciardi, A., & Rasmussen, J. B. 1999. Extinction Rates of North American Freshwater Fauna Tasas de Extinción de Fauna de Agua Dulce en Norteamérica. Conservation Biology, 13(5), 1220–1222. DOI: 10.1046/j.1523-1739.1999.98380.x

Rooney, N., McCann, K., Gellner, G., & Moore, J. C. 2006. Structural asymmetry and the stability of diverse food webs. Nature, 442 (7100), 265–269.

Rooney, N., & McCann, K. S. 2012. Integrating food web diversity, structure and stability. Trends in Ecology & Evolution, 27(1), 40–46.

Sabo, J. L., Finlay, J. C., Kennedy, T., & Post, D. M. 2010a. The Role of Discharge Variation in Scaling of Drainage Area and Food Chain Length in Rivers. Science, 330(6006), 965.

Sabo, J. L., Finlay, J. C., Kennedy, T., & Post, D. M. 2010b. The role of discharge variation in scaling of drainage area and food chain length in rivers. Science, 330(6006), 965–967.

Saha, N., Aditya, G., & Saha, G. K. 2009. Habitat complexity reduces prey vulnerability: An experimental analysis using aquatic insect predators and immature dipteran prey. Journal of Asia-Pacific Entomology, 12(4), 233–239. DOI: 10.1016/j.aspen.2009.06.005

Saint-Béat, B., Baird, D., Asmus, H., Asmus, R., Bacher, C., Pacella, S. R., Johnson, G. A., David, V., Vézina, A. F., & Niquil, N. 2015. Trophic networks: How do theories link ecosystem structure and functioning to stability properties? A review. Ecological Indicators, 52, 458–471. DOI: 10.1016/j.ecolind.2014.12.017

Sánchez-Hernández, J., Cobo, F., & Amundsen, P.-A. 2015. Food Web Topology in High Mountain Lakes. PloS one, 10(11), e0143016.

Saunders, D. L., & Kalff, J. 2001. Nitrogen retention in wetlands, lakes and rivers. Hydrobiologia, 443(1), 205–212. DOI: 10.1023/a:1017506914063

Scheffer, M., & van Nes, E. H. 2007. Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia, 584(1), 455–466.

Schoener, T. W. 1989. Food webs from the small to the large: The Robert H. MacArthur Award Lecture. Ecology, 70(6), 1559–1589.

Sole, R. V., & Montoya, M. 2001. Complexity and fragility in ecological networks. Proceedings of the Royal Society of London. Series B: Biological Sciences, 268(1480), 2039–2045.

Sugihara, G., Schoenly, K., & Trombla, A. 1989. Scale invariance in food web properties. Science, 245(4913), 48–52.

Thierry, A., Petchey, O. L., Beckerman, A. P., Warren, P. H., & Williams, R. J. 2011. The consequences of size dependent foraging for food web topology. Oikos, 120(4), 493–502. DOI: 10.1111/j.1600-0706.2010.18861.x

Thompson, R., & Townsend, C. 2003. Impacts on stream food webs of native and exotic forest: an intercontinental comparison. Ecology, 84(1), 145–161.

Thompson, R. M., & Townsend, C. R. 2004. Land‐use influences on New Zealand stream communities: Effects on species composition, functional organisation, and food‐web structure. New Zealand journal of marine and freshwater research, 38(4), 595–608. DOI: 10.1080/00288330.2004.9517265

Townsend, C. R., Thompson, R. M., McIntosh, A. R., Kilroy, C., Edwards, M., & Scarsbrook, M. 1998. Disturbance, resource supply, and food-web architecture in streams. Ecology Letters, 1(3), 200–209. DOI: 10.1046/j.1461-0248.1998.00039.x

Ulanowicz, R. E. 1997. Ecology, The Ascendent Perspective, Columbia University Press.

Ulanowicz, R. E., Goerner, S. J., Lietaer, B., & Gomez, R. 2009. Quantifying sustainability: Resilience, efficiency and the return of information theory. Ecological Complexity, 6(1), 27–36. DOI: 10.1016/j.ecocom.2008.10.005

Vander Zanden, M. J., Shuter, B. J., Lester, N., & Rasmussen, J. B. 1999. Patterns of food chain length in lakes: a stable isotope study. The American Naturalist, 154(4), 406–416.

Vázquez, D. P., & Simberloff, D. 2002. Ecological specialization and susceptibility to disturbance: Conjectures and refutations. The American Naturalist, 159(6), 606–623.

Vorosmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., Liermann, C. R., & Davies, P. M. 2010. Global threats to human water security and river biodiversity. Nature, 467(7315), 555–561. DOI: 10.1038/nature09440

Wagenhoff, A., Townsend, C. R., Phillips, N., & Matthaei, C. D. 2011. Subsidy–stress and multiple-stressor effects along gradients of deposited fine sediment and dissolved nutrients in a regional set of streams and rivers. Freshwater Biology, 56(9), 1916–1936. DOI: 10.1111/j.1365-2427.2011.02619.x

Warfe, D. M., Jardine, T. D., Pettit, N. E., Hamilton, S. K., Pusey, B. J., Bunn, S. E., Davies, P. M., & Douglas, M. M. 2013. Productivity, Disturbance and Ecosystem Size Have No Influence on Food Chain Length in Seasonally Connected Rivers. PloS one, 8(6), e66240.

Warren, P. H. 1989. Spatial and temporal variation in the structure of a freshwater food web. Oikos, 55(3), 299–311.

Watts, D. J., & Strogatz, S. H. 1998. Collective dynamics of `small-world' networks. Nature, 393(6684), 440–442.

Wetzel, R. G. 2001. Limnology: lake and river ecosystems. Gulf Professional Publishing.

Williams, R. 2010a. Network 3D software. Microsoft Research, Cambridge, UK.

Williams, R. J. 2010b. Simple MaxEnt models explain food web degree distributions. Theoretical Ecology, 3(1), 45–52.

Williams, R. J., Berlow, E. L., Dunne, J. A., Barabási, A.-L., & Martinez, N. D. 2002. Two degrees of separation in complex food webs. Proceedings of the National Academy of Sciences, 99(20), 12913–12916. DOI: 10.1073/pnas.192448799

Williams, R. J., & Martinez, N. D. 2004. Limits to trophic levels and omnivory in complex food webs: Theory and data. The American Naturalist, 163(3), 458–468.

Woodward, G., Ebenman, B., Emmerson, M., Montoya, J. M., Olesen, J. M., Valido, A., & Warren, P. H. 2005. Body size in ecological networks. Trends in Ecology & Evolution, 20(7), 402–409. DOI: 10.1016/j.tree.2005.04.005

Woodward, G., Papantoniou, G., Edwards, F., & Lauridsen, R. B. 2008. Trophic trickles and cascades in a complex food web: impacts of a keystone predator on stream community structure and ecosystem processes. Oikos, 117(5), 683–692. DOI: 10.1111/j.0030-1299.2008.16500.x

Yoon, I., Williams, R., Levine, E., Yoon, S., Dunne, J., & Martinez, N. 2004. Webs on the web (wow): 3d visualization of ecological networks on the www for collaborative research and education. pp. 124–132. International Society for Optics and Photonics.



  • There are currently no refbacks.