INVENTORY OF AQUATIC MACROPHYTE SPECIES IN COASTAL RIVERS OF THE SÃO PAULO STATE, BRAZIL

Authors

  • Laís Samira Correia Nunes Universidade Estadual Paulista
  • Cristiane Akemi Umetsu Universidade Estadual Paulista
  • Maria Estefânia Fernandes Rodrigues Universidade de São Paulo
  • Vali Joana Pott Universidade Federal de Mato Grosso do Sul
  • Antonio Fernando Monteiro Camargo Universidade Estadual Paulista

DOI:

https://doi.org/10.4257/oeco.2019.2304.09

Keywords:

aquatic plants, coastal river basin, estuary, life forms

Abstract

The coastal region of the São Paulo state (Southeastern Brazil) is marked by the presence of the Serra do Mar, a system of mountain ranges with altitude up to 1,000 m. Due to the difference of proximity of the mountain range to the coastline, the coastal plains have different width. As a consequence, the rivers that cross the plains also have different length, greater or less influence of marine waters and slope variation. We carried on an inventory of aquatic macrophyte species in order to assess the species and life form richness and latitudinal distribution in this region. Macrophytes were inventoried at 100 sampling sites in eight rivers (between 9 and 19 sites per river) in March 2017. General descriptions on taxonomic aspects, life forms and frequency of occurrence of the macrophytes were explored. We recorded 45 taxa of aquatic macrophytes belonging to 24 families. Three species are exotic, but they presented low frequencies of occurrence. The vast majority of the taxa have emergent life form. Floating and submerged macrophytes were found in only two rivers. The most frequent species were Crinum americanum L. (Asparagales, Amaryllidaceae), Spartina alterniflora Loisel. (Poales, Poaceae) and Schoenoplectus californicus (C. A. Mey.) Soják (Poales, Cyperaceae). Most taxa are rare in terms of occurrence. Only four species occurred along a large part of the north-south stretch sampled and these, possibly, have a wide tolerance to the variation in resource requirements and salinity. The north-south gradient of the taxa occurrence may be related to the diversity of environmental characteristics due to differences in the rivers length and coastal plains width.

References

Abu-Hena, M. K., Aysha, A., Ashraful, M. A. K., & Sharifuzzaman, S. M. 2010. Distribution of aquatic macrophytes in the coastal area of Salimpur, Chittagong, Bangladesh. Journal of Natural Sciences, 9(2), 273–279.

Adair, S. E., Moore, J. L., & Onuf, S. P. 1994. Distribution and status of submerged vegetation in estuaries of the upper Texas coast. Wetlands, 14(2), 110–121. DOI: 10.1007/BF03160627

Agostinho, A. A., Thomaz, S. M., & Gomes, L. E. 2005. Conservação da biodiversidade em águas continentais do Brasil. Megadiversidade, 1(1), 70–78.

Almeida, F. F. M., & Carneiro, C. D. 1998. Origem e evolução da Serra do Mar. Revista Brasileira de Geociências, 28(2), 135–150.

Amaral, M. C. E., Bittrich, V., Faria. A. D., Anderson. L. O., & Aona, Y. S. 2008. Guia de campo para plantas aquáticas e palustres do Estado de São Paulo. 1st ed. Ribeirão Preto: Holos: p. 452.

Amorim, S. R., Umetsu, C. A., Toledo, D., & Camargo, A. F. M. 2015. Effects of a nonnative species of Poaceae on aquatic macrophyte community composition: a comparison with native species. Journal of Aquatic Plant Management, 53, 191–196.

Aslam, R., Bostan, N., Nabgha-e-Ame, M., & Safdar, W. 2011. A critical review on halophytes: salt tolerant plants. Journal of Medicinal Plants Research, 5(33), 7108–7118. DOI: 10.5897/JMPRX11.009

Bertness, M. D. 1991. Zonation of Spartina patens and Spartina alterniflora in a New England salt marsh. Ecology, 72(1), 138–148. DOI: 10.2307/1938909

Bertness, M. D., & Ellison, A. M. 1987. Determinants of pattern in a New England salt marsh plant community. Ecological Monographs, 57(2), 129–147. DOI: 10.2307/1942621

Bove, C. P., Gil. A. S. P., Moreira, C. B., & Anjos, R. F. B. 2003. Hidrófitas fanerogâmicas de ecossistemas aquáticos temporários da planície costeira do estado do Rio de Janeiro, Brasil. Acta Botanica Brasilica, 17(1), 119–153. DOI: 10.1590/S0102-33062003000100009

Boyce, S. G. 1954. The salt spray community. Ecological Monographs, 24(1), 29–67. DOI: 10.2307/1943510

Brooks, T., Fonseca, G. A. B., & Rodrigues, A. S. L. 2004. Species, data, and conservation planning. Conservation Biology, 18(6), 1682–1688. DOI: 10.1111/j.1523-1739.2004.00457.x

Camargo, A. F. M., & Florentino, E. R. 2000. Population dynamics and net primary production of the aquatic macrophyte Nymphaea rudgeana C. F. Mey in a lotic environment of the Itanhaém River basin (SP, Brazil). Revista Brasileira de Biologia, 60(1), 83–92. DOI: 10.1590/S0034-71082000000100011

Camargo, A. F. M., Pezzato, M. M., & Henry-Silva, G. G. 2003. Fatores limitantes à produção primária de macrófitas aquáticas. In: S. M. Thomaz & L. M. Bini (Eds.), Ecologia e manejo de macrófitas aquáticas. pp. 59–83. Maringá: EDUEM.

Castillo, J. M., Fernândez-Baco, L., Castellanos, E. M., Luque, C.J., Figueroa, M. E., & Davy, A. J. 2000. Lower limits of Spartina densiflora and S. maritima in a Mediterranean salt marsh determined by different ecophysiological tolerances. Journal of Ecology, 88(5), 801–812. DOI: 10.1046/j.1365-2745.2000.00492.x

Castro, W. A. C., Almeida, R. V., Leite, M. B., Marrs, R. H., & Matos, D. M. S. 2016. Invasion strategies of the white ginger lily Hedychium coronarium J. König (Zingiberaceae) under different competitive and environmental conditions. Environmental and Experimental Botany, 127, 55–62. DOI: 10.1016/j.envexpbot.2016.03.010

Chambers, P. A., Lacoul, P. A., Murphy, K. J., & Thomaz, S. M. 2008. Global diversity of aquatic macrophytes in freshwater. Hydrobiologia, 595(1), 9–26. DOI: 10.1007/s10750-007-9154-6

Costa, C. S. B., Marangoni, J. C., & Azevedo, A. M. G. 2003. Plant zonation in irregular flooded salt marshes: relative importance of stress tolerance and biological interactions. Journal of Ecology, 91(6), 951–965. DOI: 10.1046/j.1365-2745.2003.00821.x

Crain, C. M., Silliman, B. R., Bertness, S. L., & Bertness, M. D. 2004. Physical and biotic drivers of plant distribution across estuarine salinity gradients. Ecology, 85(9), 2539–2549. DOI: 10.1890/03-0745

Embrapa - Empresa Brasileira de Pesquisa Agropecuária. 2015. Banco de dados climáticos do Brasil. Retrieved on September 02, 2015, from https://www.cnpm.embrapa.br/projetos/bdclima/balanco/index/index_sp.html

Engels, J. G. 2010. Drivers of marsh plant zonation and diversity patterns along estuarine stress gradients. Doctoral thesis. Department of Biology of University of Hamburg. p. 95.

Fariña, J. M., He, Q., Silliman, B. R., & Bertness, M. D. 2017. Biogeography of salt marsh plant zonation on the Pacific Coast of South America. Journal of Biogeography, 45(1), 1–10. DOI: 10.1111/jbi.13109

Fernandes, L. F. G., Teixeira, M. C., & Thomaz, S. M. 2013. Diversity and biomass of native macrophytes are negatively related to dominance of an invasive Poaceae in Brazilian sub-tropical streams. Acta Limnologica Brasiliensia, 25(2), 202–209. DOI: 10.1590/S2179-975X2013000200011

Ferreira, J. P. R., Hassemer, G., & Trevisan, R. 2017. Aquatic macrophyte flora of coastal lakes in Santa Catarina, southern Brazil. Iheringia, 72(3), 409–419. DOI: 10.21826/2446-8231201772311

Flora do Brasil 2020 under construction. Jardim Botânico do Rio de Janeiro. Retrieved on February 20, 2018, from http://floradobrasil.jbrj.gov.br/

Flowers, T. J., & Colmer, T. D. 2015. Plant salt tolerance: adaptations in halophytes. Annals of Botany, 115, 327–331. DOI: 10.1093/aob/mcu267

GraphPad Software. 2007. Prism (data analysis software system), version 5.0.

Guo, H., & Pennings, S. C. 2012. Mechanisms mediating plant distributions across estuarine landscapes in a low-latitude tidal estuary. Ecology, 93(1), 90–100. DOI: 10.1890/11-0487.1

Henry-Silva, G. G., Moura, R. S. T, & Dantas, L. L. O. 2010. Richness and distribution of aquatic macrophytes in Brazilian semi-arid aquatic ecosystems. Acta Limnologica Brasiliensia, 22(2), 147–156. DOI: 10.4322/actalb.02202004

Hickenbick, G. R., Ferro, A. L., & Abreu, P. C. 2004. Produção de detrito de macrófitas emergentes em uma marisma do estuário da lagoa dos patos: taxas de decomposição e dinâmica microbiana. Atlântica, 26(1), 61–75. DOI: 10.5088/atlântica.v26i1.2233

Hsieh, T. C., Ma K. H., & Chao, A. 2018. iNEXT: interpolation and extrapolation for species diversity. R package version 2017. Retrived from http://chao.stat.nthu.edu.tw/blog/software-download/

IPT - Instituto de Pesquisas Tecnológicas. 1981. Mapa geomorfológico do estado de São Paulo. 1st ed. São Paulo: IPT: p. 94.

Isacch, J. P., Costa, C. S. B., Rodríguez-Gallego, L., Conde, D., Escapa, M., Gagliardini, A., & Iribane, O.O. 2006. Distribution of saltmarsh plant communities associated with environmental factors along a latitudinal gradient on the south-west Atlantic coast. Journal of Biogeography, 33(5), 888–900. DOI: 10.1111/j.1365-2699.2006.01461.x

Janousek, C. N., & Folger, C. L. 2014. Variation in tidal wetland plant diversity and composition within and among coastal estuaries: assessing the relative importance of environmental gradients. Journal of Vegetation Science, 25(2), 534–545. DOI: 10.1111/jvs.12107

Lobo, E., & Leighton, G. 1986. Estruturas de las fitocenosis planctonicas de los sistemas de desembocaduras de rio y esteros de la zona central de Chile. Revista de Biologia Marinha, 22(1), 143–170.

Lorenzi, H. 2000. Plantas daninhas do Brasil: aquáticas, parasitas e tóxicas. 3rd ed. Nova Odessa: Instituto Plantarum: p. 608.

Lycarião, T. A., & Dantas, Ê. W. 2017. Interactions between different biological forms of aquatic macrophytes in a eutrophic tropical reservoir in northeastern Brazil. Revista de Biología Tropical, 65(3), 1095–1104. DOI: 10.15517/rbt.v65i3.29441

Marcum, K. B. 2008. Saline tolerance physiology in grasses. In: M. A. Khan, & D. J. Weber (Eds.), Ecophysiology of high salinity tolerant plants. pp. 157–172. Netherlands: Springer Series. DOI: 10.1007/1-4020-4018-0_11

Matias, L. G., Amado, E. R., & Nunes, E. P. 2003. Macrófitas aquáticas da lagoa de Jijoca de Jericoacoara, Ceará, Brasil. Acta Botanica Brasilica, 17(4), 623–631. DOI: 10.1590/S0102-33062003000400015

Michelan, T. S., Thomaz, S. M., Mormul, R. P., & Carvalho, P. 2010. Effects of an exotic invasive macrophyte (tropical signalgrass) on native plant community composition, species richness and functional diversity. Freshwater Biology, 55(6), 1315–1326. DOI: 10.1111/j.1365-2427.2009.02355.x

Michelan, T. S., Thomaz, S. M., & Bini, L. M. 2013. Native macrophyte density and richness affect the invasiveness of a tropical Poaceae species. Plos One, 8(3), 1–8. DOI: 10.1371/journal.pone.0060004

Monteiro, C. A. F. 1973. A dinâmica climática e as chuvas no estado de São Paulo: estudo geográfico sob forma de atlas. 1st ed. São Paulo: Instituto de Geografia da Universidade de São Paulo: p 130.

Moura-Júnior, E. G., Lima, L. F., Silva, S. S. L., Paiva, R. M. S., Ferreira, F. A. F., Zickel, C. S., & Pott, A. 2013. Aquatic macrophytes of northeastern Brazil: checklist, richness, distribution and life forms. Check List, 9(2), 298–312. DOI: 10.15560/9.2.298

Nunes, L. S. C., & Camargo, A. F. M. 2018. Do interspecific competition and salinity explain plant zonation in a tropical estuary? Hydrobiologia, 812(1), 67–77. DOI: 10.1007/s10750-016-2821-8

Overholt, W. A., & Franck, A. R. 2017. The invasive legacy of forage grass introductions into Florida. Natural Areas Journal, 37(2), 254–264. DOI: 10.3375/043.037.0214

Paudel, S., Milleville, A., & Battaglia, L. L. 2018. Responses of native and invasive floating aquatic plant community to salinity and desiccation stress in southeastern US coastal floodplain forests. Estuaries and Coasts, 41(8), 2331–2339. DOI: 10.1007/s12237-018-0419-2

Pennings, S. C., & Bertness, M. D. 1999. Using latitudinal variation to examine effects of climate on coastal salt marsh pattern and process. Current Topics in Wetland Biogeochemistry, 3, 100–111.

Pinheiro, M. A. A., Costa, T. M., Gadig, O. B. F., & Buckmann, F. S. C. 2008. Os ecossistemas costeiros e sua biodiversidade na Baixada Santista. In: A. J. F. Oliveira, M. A. A. Pinheiro, & R. F. C. Fontes (Eds.), Panorama ambiental da Baixada Santista. pp. 7–26. 1st ed. São Paulo: Páginas & Letras: p. 127.

Pinto-Coelho, R. M., & Havens, K. 2015. Crise nas águas: educação, ciência e governança juntas evitando conflitos gerados por escassez e perda da qualidade das águas. 1st ed. Belo Horizonte: Recóleo: p. 162.

Pott, V. J., & Pott, A. 2000. Plantas aquáticas do Pantanal. 1st ed. Brasília: Embrapa: p. 404.

Pott, V. J., Pott, A., Lima, L. C. P., Moreira, S. N., & Oliveira, A. K. M. 2011. Aquatic macrophyte diversity of the Pantanal wetland and upper basin. Brazilian Journal of Biology, 71(1), 255–263. DOI: 10.1590/S1519-69842011000200004

R Development Core Team, 2018. R: A language and environment for statistical computing, version 3.5.1. R Foundation for Statistical Computing, Vienna, Austria. Retrived from http://www.R-project.org

Ribeiro, J. P. N., Takao, L. K., Matsumoto, R. S., Urbanetz, C., & Lima, M. I. S. 2011. Plantae, aquatic, amphibian and marginal species, Massaguaçu River Estuary, Caraguatatuba, São Paulo, Brazil. Check List, 7(2), 133–138. DOI: 10.15560/7.2.133

Ribeiro, J. P. N., Saggio, A., & Lima, M. I. S. 2013. The effects of artificial sandbar breaching on the macrophyte communities of an intermittently open estuary. Estuarine, Coastal and Shelf Sciences, 121, 33–39. DOI: 10.1016/j.ecss.2013.02.007

Rodrigues, M. E. F., Souza, V. C., Pompêo, M. L. M. 2017. Levantamento florístico de plantas aquáticas e palustres na Represa Guarapiranga, São Paulo, Brasil. Boletim de Botânica da Universidade de São Paulo, 35, 1–64. DOI: 10.11606/issn.2316-9052.v35i0p1-64

Rumrill, S. S., & Sowers, D. C. 2008. Concurrent assessment of eelgrass beds (Zostera marina) and salt marsh communities along the estuarine gradient of the South Slough, Oregon. Journal of Coastal Research, 55(55), 121–134. DOI: 10.2112/SI55-016.1

Sabovljevic, M., & Sabovljevic, A. 2007. Contribution to the coastal bryophytes of the northern Mediterranean: are there halophytes among bryophytes? Phytologia Balcanica, 13(2), 131–135.

Santos, A. M., & Esteves, F. A. 2004. Influence of water level fluctuation on the mortality and aboveground biomass of the aquatic macrophytes Eleocharis interstincta (VAHL) Roemer et Schults. Brazilian Archives of Biology and Technology, 47(2), 281–290. DOI: 10.1590/S1516-89132004000200016

Scavia, D., Field, J. C., Boesch, D. F., Buddemeier, R.W., Burkett, V., Cayan, D. R., Fogarty, M., Harwell, M. A., Howarth, R. W., Mason, C., Reed, D. J., Royer, T. C., Sallenger, A. H., & Titus, J. G. 2002. Climate change impacts on U.S. coastal and marine ecosystems. Estuaries, 25(2), 149–164. DOI: 10.1007/BF02691304

Smith, R. S., Shiel, R. S., Millward, D., Corkhill, P., & Sanderson, R. A. 2002. Soil seed banks and the effects of meadow management on vegetation change in a 10-year meadow field trial. Journal of Applied Ecology, 39(2), 279–293. DOI: 10.1046/j.1365-2664.2002.00715.x

Soares, D. J., & Barreto, R. W. 2008. Fungal pathogens of the invasive riparian weed Hedychium coronarium from Brazil and their potential for biological control. Fungal Diversity, 28, 85–96.

Souza, T. A., & Cunha, C. M. L. 2011. O litoral sul do estado de São Paulo: uma proposta de compartimentação geomorfológica. Caminhos de Geografia, 12(37), 107–123.

Souza, D. C., Cunha, E. R., Murillo, R. A., Silveira, M. J., Pulzatto, M. M., Dainez-Filho, M. S., Lolis, L. A, & Thomaz, S. M. 2017a. Species inventory of aquatic macrophytes in the last undammed stretch of the upper Paraná River, Brazil. Acta Limnologia Brasiliensia, 29, 1–15. DOI: 10.1590/s2179-975x6017

Souza, W. O., Pena, N. T. L., Garbin, M. L., & Alves-Araújo, A. 2017 b. Macrophytes from Parque Estadual de Itaúnas, Espírito Santo, Brazil. Rodriguésia, 68(5), 1907–1919. DOI: 10.1590/2175-7860201768523

Suguio, K., Martin, L., & Fairchild, T. R. 1978. Quaternary marine formations of the state of São Paulo and southern Rio de Janeiro. Instituto de Geociências da Universidade de São Paulo, São Paulo, p. 68.

Sutton, D. L. 1996. Growth of torpedograss from rhizomes planted under flooded conditions. Journal of Aquatic Plant Management, 34, 50–53.

Tessler, M. G., Goya. S. C., Yoshikawa, P. S., & Hurtado, S. N. 2006. Erosão de progradação do litoral brasileiro: São Paulo. In: D. Muehe (Ed.), Erosão de progradação do litoral brasileiro. 2nd ed. Brasília: Ministério do Meio Ambiente: p.476.

Thomaz, S. M., Pagioro, T. A., Bini, L. M., Roberto, M. C., & Rocha, R. R. A. 2004. Limnology of the upper Paraná floodplain habitats: patterns of spatio-temporal variations and influence of the water levels. In: A. A. Agostinho, L. Rodrigues, L. C. Gomes, S. M. Thomaz & L. E Miranda (Eds.), Structure and functioning of the Paraná River and its floodplain (Peld-site6). pp. 37–42. Maringá: EDUEM.

Touchette, B. W. 2006. Salt tolerance in a Juncus roemerianus brackish marsh: spatial variations in plant water relations. Journal of Experimental Marine Biology and Ecology, 337(1), 1–12. DOI: 10.1016/j.jembe.2006.05.011

Valilela, I., Teal, J. M., & Werner, G. 1978. The nature of growth forms in the salt marsh grass Spartina alterniflora. The American Naturalist, 112(985), 461–470. DOI: 10.1086/283290

Watson, E. B., & Byrne, R. 2009. Abundance and diversity of tidal marsh plants along the salinity gradient of the San Francisco Estuary: implications for global change ecology. Plant Ecology, 205, 113–128. DOI: 10.1007/s11258-009-9602-7

Wolanski, E. 2007. Estuarine ecohydrology. 1st ed. Amsterdam: Elsevier: p. 168.

Zhou, J., Zheng, L. D., Pan, X., Li, X., Kang, X. M. , Li, J., Ning, Y., Zhang, M. X., & Cui, L. J. 2018. Hydrological conditions affect the interspecific interaction between two emergent wetland species. Frontiers in Plant Science, 8, 1–9. DOI: 10.3389/fpls.2017.02253

Downloads

Published

2019-12-16