EFFECT OF THE PANTANAL’S FLOODING HISTORY IN MORPHOMETRIC ASPECTS OF THE SOLITARY PARASITOID Campsomeris dorsata (HYMENOPTERA: SCOLIIDAE)

Authors

DOI:

https://doi.org/10.4257/oeco.2019.2304.22

Keywords:

geometric morphometric, landmarks, wasp, wetland regime, wings

Abstract

The shape of an organism and the variation between related groups lie at the core of understanding evolution and interactions between phenotypes, genotypes, and environmental spaces. Due to the relief conditions and hydrological profile of the region, the areas inside the Pantanal have different flood histories in respect to the flood duration and the amount of water retained in the plain. The objective of this work was to evaluate the effect of the environmental flooding gradient on the geometric morphometry variation of Campsomeris dorsata (Hymenoptera: Scoliidae) wings in Pantanal, to understand if the variations in spatial distribution related to the flooding history interferes in the morphology of the wings by identifying where, how, and to what magnitude such changes occur. The wings were mounted between blade and coverslip, labeled, and prepared for morphometric measurements. The points of intersection of wing veins (landmarks) were determined using a stereoscopic microscope coupled with a camera. The linear measurements of the landmarks were transformed using Procrustes to remove the size effect, leaving only the shape of the wings. The transformed data was evaluated using PCA and MANOVA to identify if there were differences in relation to the geographical location of occurrence. Thirty-three male C. dorsata wings were measured, and there was a clear separation between 3 distinct wing form groups along the Pantanal distribution. The variation in wing shape could be associated with selection from local environmental conditions in areas with distinct flooding histories, influencing migratory aspects among populations within the Brazilian Pantanal. The data for this small species, that has low dispersal capacity, is solitary, and presents an intimate relationship with soil characteristics, which directly reflects flooding aspects in the Pantanal, only reinforces the need to conserve more areas in the Brazilian Pantanal, since genetic diversity is an important factor for conservation.

References

Alho, C., & Silva, J. 2012. Effects of severe floods and droughts on wildlife of the Pantanal wetland (Brazil) - A review. Animals, 2(4), 591–610. DOI: 10.3390/ani2040591

Aranda, R., & Aoki, C. 2018. Diversity and effect of historical inundation on bee and wasp (Hymenoptera: Apoidea, Vespoidea) communities in the Brazilian Pantanal. Journal of Insect Conservation, 22(3), 581–591. DOI: 10.1007/s10841-018-0087-3

Aytekin, M. A., Terzo, M., Rasmont, P., & Çağatay, N. 2007. Landmark based geometric morphometric analysis of wing shape in Sibiricobombus Vogt (Hymenoptera: Apidae: Bombus Latreille). Annales de la Societe Entomologique de France, 43(1), 95–102. DOI: 10.1080/00379271.2007.10697499

Banaszak-Cibicka, W., Fliszkiewicz, M., Langowska, A., & Żmihorski, M. 2017. Body size and wing asymmetry in bees along an urbanization gradient. Apidologie, 49(3), 297–306. DOI: 10.1007/s13592-017-0554-y

Barour, C., Tahar, A., & Baylac, M. 2011. Forewing shape variation in Algerian honey bee populations of Apis mellifera intermissa (Buttel-Reepen, 1906) (Hymenoptera: Apidae): A landmark-based geometric morphometrics analysis. African Entomology, 19(1), 11–22. DOI: 10.4001/003.019.0101

Borba, R. S., Silva, E. L., Ponzetto, J. M., Pozzobon, a P. B., Centofante, L., Alves, A. L., & Parise-Maltempi, P. P. 2013. Genetic structure of the ornamental tetra fish species Piabucus melanostomus Holmberg, 1891 (Characidae, IguanodectinaE) in the Brazilian Pantanal wetlands inferred by mitochondrial DNA sequences. Biota Neotropica, 13(1), 42–46. DOI: 10.1590/S1676-06032013000100004

Bradley, J. 1957. The taxa of Campsomeris (Hymenoptera: Scoliidae) occurring in the New World. American Entomological Society, 83(2), 65–77.

Cardini, A., Jansson, A. U., & Elton, S. 2007. A geometric morphometric approach to the study of ecogeographical and clinal variation in vervet monkeys. Journal of Biogeography, 34(10), 1663–1678. DOI: 10.1111/j.1365-2699.2007.01731.x

Catian, G., Muniz, D., Súarez, Y. R., & Scremin-Dias, E. 2018. Effects of flood pulse dynamics on functional diversity of macrophyte communities in the Pantanal Wetland. Wetlands, 38(5), 975–991.

Carvalho, C. A. L., Silva Santos, W., Nunes, L. A., Souza, B. A., De Zilse, G. A. C., & De Alves, R. M. O. 2011. Offspring analysis in a polygyne colony of Melipona scutellaris (Hymenoptera: Apidae) by means of morphometric analyses. Sociobiology, 57(2), 347–354.

Ciotek, L., Giorgis, P., Benitez-Vieyra, S., & Cocucci, A. A. 2006. First confirmed case of pseudocopulation in terrestrial orchids of South America: Pollination of Geoblasta pennicillata (Orchidaceae) by Campsomeris bistrimacula (Hymenoptera, Scoliidae). Flora: Morphology, Distribution, Functional Ecology of Plants, 201(5), 365–369. DOI: 10.1016/j.flora.2005.07.012

Danforth, N. B. 1989. The evolution of hymenopteran wings: the importance of size. Journal of Zoology, 218, 247–276.

Debat, V., Alibert, P., David, P., Paradis, E., & Auffray, J.-C. 2000. Independence between developmental stability and canalization in the skull of the house mouse. Proceedings of the Royal Society of London B, 267, 423–430.

Faria, P. J., Guedes, N. M. R., Yamashita, C., Martuscelli, P., & Miyaki, C. Y. 2008. Genetic variation and population structure of the endangered Hyacinth Macaw (Anodorhynchus hyacinthinus): Implications for conservation. Biodiversity and Conservation, 17(4), 765–779. DOI: 10.1007/s10531-007-9312-1

Fornel, R., & Cordeiro-Estrela, P. 2012. Morfometria geométrica e a quantificação da forma dos organismos. Temas em biologia: edição comemorativa aos 20 anos do curso de ciências biológicas e aos 5 anos do PPG-Ecologia da URI Campus de Erechim, 101–120. DOI: 10.13140/2.1.1793.1844

Francoy, T. M., Grassi, M. L., Imperatriz-Fonseca, V. L., May-Itzá, W. J., & Quezada-Euán, J. J. G. 2011. Geometric morphometrics of the wing as a tool for assigning genetic lineages and geographic origin to Melipona beecheii (Hymenoptera: Meliponini). Apidologie, 42(4), 499–507. DOI: 10.1007/s13592-011-0013-0

Gonçalves, H. C., Mercante, M. A., & Santos, E. T. 2011. Hydrological cycle. Brazilian Journal of Biology, 71(1), 241–53.

Goulet, H. 1993. Hymenoptera of the World: An identification guide to families. Canada, Ottawa: p. 680.

Gumiel, M., Catalá, S., Noireau, F., Arias, A. R., García, A., & Dujardin, J. P. 2003. Wing geometry in Triatoma infestans (Klug) and T. melanosoma Martinez, Olmedo & Carcavallo (Hemiptera: Reduviidae). Systematic Entomology, 28(2), 173–179. DOI: 10.1046/j.1365-3113.2003.00206.x

Hamilton, S. K. 2002. Hydrological controls of ecological structure and function in the Pantanal wetland (Brazil). pp. 133-158. In: M. McClain (Ed.), The ecohydrology of South American rivers and wetlands. Manaus: International Association of Hydrological Sciences.

Hammer, Ø., Harper, D. A. T., & Ryan, P. D. 2001. PAST: Paleontological statistics software package for education and data analysis ver. 3.1. Palaeontologia Electronica, 4, 9.

Hoffmann, A. A., & Shirriffs, J. 2002. Geographic variation for wing shape in Drosophila serrata. Evolution, 56(5), 1068–1073.

Hoffmann, A. A., Woods, R. E., Collins, E., Wallin, K., White, A., & McKenzie, J. A. 2005. Wing shape versus asymmetry as an indicator of changing environmental conditions in insects. Australian Journal of Entomology, 44(3), 233–243. DOI: 10.1111/j.1440-6055.2005.00469.x

Inoue, M., & Endo, T. 2008. Below-ground host location by Campsomeriella annulata (Hymenoptera: Scoliidae), a parasitoid of scarabaeid grubs. Journal of Ethology, 26(1), 43–50. DOI: 10.1007/s10164-006-0028-6

Jungers, W. L., Falsetti, A. B., & Wall, C. E. 1995. Shape, relative size, and size‐adjustments in morphometrics. American Journal of Physical Anthropology, 38(21), 137–161. DOI: 10.1002/ajpa.1330380608

Junk, W. J., Cunha, C. N., Wantzen, K. M., Petermann, P., Strüssmann, C., Marques, M. I., & Adis, J. 2006. Biodiversity and its conservation in the Pantanal of Mato Grosso, Brazil. Aquatic Sciences, 68(3), 278–309. DOI: 10.1007/s00027-006-0851-4

Katzke, J., Barden, P., Dehon, M., Michez, D., & Wappler, T. 2018. Giant ants and their shape: revealing relationships in the genus Titanomyrma with geometric morphometrics. PeerJ, 6, e4242. DOI: 10.7717/peerj.4242

Klingenberg, C. P., Barluenga, M., & Meyer, A. 2002. Shape analysis of symmetric structures: quantifying variation among individuals and asymmetry. Evolution, 56, 1909–1920.

Klingenberg, C. P., & McIntyre, G. S. 1998. Geometric morphometrics of developmental instability: analyzing patterns of fluctuating asymmetry with Procrustes methods. Evolution, 52, 1363–1375.

Köeppen, W. 1948. Climatologia: con un estudio de los climas de la Terra. Buenos Aires, México: Fondo de Cultura Economica: p. 478.

Komatsu, T., Maruyama, M., Hattori, M., & Itino, T. 2018. Morphological characteristics reflect food sources and degree of host ant specificity in four myrmecophilus crickets. Insectes Sociaux, 65(1), 47–57. DOI: 10.1007/s00040-017-0586-3

LaSalle, J., & Gauld, I. d. 1993. Hymenoptera and biodiversity. London: CABI Publishing: p. 348.

Melo, G. A. R., Aguiar, A. P., & Garcete-Barret, B. R. 2012. Insetos do Brasil: Diversidade e taxonomia. In: J. A. Rafael, G. A. R. Melo, C. J. B. Carvalho, S. A. Casari, & R. Constantino (Eds.), Insetos do Brasil: Diversidade e taxonomia. p. 796. Ribeirão Preto: Holos.

Nowell, W. 1915. Two Scoliid parasites on Scarabaeid larva in Barbados. Annals of Applied Biology, 2, 48–57.

Nunes, L. A., Araújo, E. D., & Marchini, L. C. 2015. Fluctuating asymmetry in Apis mellifera (Hymenoptera : Apidae ) as bioindicator of anthropogenic environments. Revista de Biología Tropical, 63, 673–682. DOI: 10.15517/rbt.v63i3.15869

Oliveira, M. D., & Calheiros, D. F. 2000. Flood pulse influence on phytoplankton communities of the south Pantanal floodplain, Brazil. Hidrobiologia, 427, 101–112.

Olivier, S., & Aranda, R. 2018. Are anatomical measurements useful for interspecific and sexual differentiation of Temnomastax (Orthoptera: Eumastacidae) species? Zoological Science, 35(3), 268–275. DOI: 10.2108/zs170088

Pott, A., Oliveira, A. K. M., Damasceno-Junior, G. A., & Silva, J. S. V. 2011. Plant diversity of the Pantanal wetland. Brazilian Journal of Biology, 71(1), 265–73.

Pott, A., & Pott, V. G. 1994. Plantas do Pantanal. Brasília, DF: EMBRAPA: p. 320.

Pretorius, E. 2005. Using geometric morphometrics to investigate wing dimorphism in males and females of Hymenoptera - A case study based on the genus Tachysphex Kohl (Hymenoptera: Sphecidae: Larrinae). Australian Journal of Entomology, 44(2), 113–121. DOI: 10.1111/j.1440-6055.2005.00464.x

Roggero, A., & Passerin d’Entrèves, P. 2005. Geometric morphometric analysis of wings variation between two populations of the Scythris obscurella species-group: geographic or interspecific differences? (Lepidoptera: Scythrididae). SHILAP Revista de Lepidopterología, 33(130), 101–112.

Sadeghi, S., Adriaens, D., & Dumont, H. J. 2009. Geometric morphometric analysis of wing shape variation in ten europena populations of Calopteryx splendens (Harris, 1782) (Zygoptera: Calopterygidae). Odonatologica, 38(4), 341–357.

Salas-Lopez, A., Violle, C., Mallia, L., & Orivel, J. 2017. Land-use change effects on the taxonomic and morphological trait composition of ant communities in French Guiana. Insect Conservation and Diversity, 11(2), 162-173. DOI: 10.1111/icad.12248

Silva, J. D. S. V., & Abdon, M. D. M. 1998. Delimitaçao do Pantanal Brasileiro e suas sub-regiões. Pesquisa Agropecuária Brasileira, 33, 1703–1711.

Silva, M. P., Mauro, R., Mourão, G., & Coutinho, M. 2000. Distribuição e quantificação de classes de vegetação do Pantanal através de levantamento aéreo. Revista Brasileira de Botânica, 23(2), 143–152. DOI: 10.1590/S0100-84042000000200004

Tani, S., & Ueno, T. 2013. Site fidelity and long-distance homing by males of solitary parasitic wasps (Hymenoptera: Scoliidae). Canadian Entomologist, 145(3), 333–337. DOI: 10.4039/tce.2012.108

Wells, C., Munn, A., & Woodworth, C. 2018. Geomorphic morphometric differences between populations of Speyeria diana (Lepidoptera: Nymphalidae). Florida Entomologist, 101(2), 195–202.

Zeilhofer, P., & Schessl, M. 1999. Relationship between vegetation and environmental conditions in the northern Pantanal of Mato Grosso , Brazil. Jounal of Biogeography, 27(1982), 159–168.

Downloads

Additional Files

Published

2019-12-16