CHANGES IN THE INSECT HERBIVORE FAUNA AFTER THE FIRST RAINS IN A TROPICAL DRY FOREST
DOI:
https://doi.org/10.4257/oeco.2019.2302.16Keywords:
dry-wet transition, insect seasonality, phenological synchrony, protected areasAbstract
Tropical dry forests are characterized by a pronounced dry season, when most trees shed their leaves, and a rainy season characterized by the production of new leaves. This study aimed to determine the effect of the first rains at the beginning of the rainy season on the insect herbivore fauna. We sampled 90 trees at the end of the dry season and 60 trees six days after the first rains using an entomological umbrella. Species richness and abundance of insect herbivores per tree was higher after the first rains. The results suggest a high synchrony between leaf production at the onset of the rainy season and the increase in insect herbivore diversity. Because young leaves are rich in nutrients and have a lower concentration of carbon-based defenses, many herbivore species in seasonal environments have their life cycles highly adjusted to the phenology of their host trees.
References
Aide, T. M. 1992. Dry season leaf production and escape from herbivory. Biotropica, 24(4), 532–537. DOI:10.2307/2389016
Antunes, F. Z. 1994. Caracterização Climática - Caatinga do Estado de Minas Gerais. Informe Agropecuário, 17, 15–19.
Boege, K. 2005. Herbivore attack in Casearia nitida influenced by plant ontogenetic variation in foliage quality and plant architecture. Oecologia, 143(1), 117–125. DOI: 10.1007/s00442-004-1779-9
Bullock, S. H., & Solis-Magallanes, J. A. 1990. Phenology of canopy trees of a tropical deciduous forest in Mexico. Biotropica, 22(1), 22–35. DOI: 10.2307/2388716
Coley, P. D., & Barone, J. A. 1996. Herbivory and plant defenses in tropical forests. Annual Review Ecology Systems, 27(1), 305–335. DOI: 10.1146/annurev.ecolsys.27.1.305
Crawley, M. J. 2007. The R Book. Jhon Willey & Sons Ltd: p. 1076.
Filip, V., Dirzo, R., Maass, J. M., & Sarukhan, J. 1995. Within-and among-year variation in the levels of herbivory on the foliage of trees from a Mexican tropical deciduous forest. Biotropica, 27(1), 78–86. DOI: 10.2307/2388905
Ivashov, A. V., Boyko, G. E., & Simchuk, A. P. 2002. The role of host plant phenology in the development of the oak leafroller moth, Tortrix viridana, L. (Lepidoptera: Tortricidae). Forest ecology and management, 157(1), 7–14. DOI: 10.1016/S0378-1127(00)00652-6
Janzen, D. H. 1973. Sweep samples of tropical foliage insects: effects of seasons, vegetation types, elevation, time of day, and insularity. Ecology, 54(3), 687–708.
Janzen, D. H. 1981. Patterns of herbivory in a tropical deciduous forest. Biotropica, 13(4), 271–282. DOI: 10.2307/2387805
Kishimoto-Yamada, K., & Itioka, T. 2015. How much have we learned about seasonality in tropical insect abundance since Wolda (1988)? Journal of Entomological Science, 18(4), 407–419. DOI: 10.1111/ens.12134
Lieberman, D., & Lieberman, M. 1984. Causes and consequences of synchronous flushing in a dry tropical forest. Biotropica, 16(3), 193–201. DOI: 10.2307/2388052
Madeira, B. G., Espírito-Santo, M. M., Dangelo Neto, S., Nunes, Y. R. F., Sanchez-Azofeifa, G. A., Fernandes, G. W., & Quesada, M. 2009. Changes in tree and liana communities along a sucessional gradient in a tropical dry Forest in south-eastern Brazil. Plant Ecology, 291(1), 291–304. DOI: 10.1007/978-90-481-2795-5_22
Medina, E. 1995. Diversity of life forms of higher plants in Neotropical dry forest. In: S. H. Bullock, H. A. Mooney & E. Medina (Eds.), Seasonally dry tropical forests. pp. 221–242. Cambridge, Cambridge University Press.
Murphy, P. G., & Lugo, A. E. 1986. Ecology of tropical dry forest. Annual Review Ecology Systems, 17(1), 67–88. DOI: 10.1146/annurev.es.17.110186.000435
Neves, F. S., Oliveira, V. H. F., Espírito-Santo, M. M., Vaz-de-Mello, F. Z., & Louzada, J. 2010. Successional and seasonal changes in a community of dung beetles (Coleoptera: Scarabaeinae) in a Brazilian Tropical Dry Forest. Natureza & Conservação, 8(2), 160–164. DOI: 10.4322/natcon.00802009
Neves, F. S., Silva J. O., Espírito-Santo, M. M., & Fernandes, G. W. 2014. Insect herbivores and leaf damage along successional and vertical gradients in a tropical dry forest. Biotropica, 46(1), 14–24. DOI: 10.1111/btp.12068
Novais, S., Macedo-Reis, L. E., Cristobal-Peréz, E. J., Sánchez-Montoya, G., Janda, M., Neves, F., & Quesada, M. 2018. Positive effects of the catastrophic Hurricane Patricia on insect communities. Scientific reports, 8(1), 15042. DOI: 10.1038/s41598-018-33210-7
Nunes, Y. R. F., Luz, G. R., & Braga, L. L. 2012. Phenology of tree species populations in Tropical Dry Forests of Southeastern Brazil. In: X. Zhang (Ed.), Phenology and climate change. pp. 125–142. InTech.
Peel, M. C., Finlayson, B. L., & Macmahon, T. A. 2007. Update world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 4(2), 439–473.
Pezzini, F. F., Ranieri, B. D. I., Brandão, D. O., Fernandes, G. W., Quesada, M., Espírito-Santo, M. M., & Jacobi, C. M. 2014. Changes in tree phenology along natural regeneration in a seasonally dry tropical forest. Plant Biosystems, 148(5), 1–10. DOI: 10.1080/11263504.2013.877530
Pinheiro, F., Diniz, I. R., Coelho, D., & Bandeira, M. P. S. 2002. Seasonal pattern of insect abundance in the Brazilian Cerrado. Austral Ecology, 27(2), 132–136. DOI: 10.1046/j.1442-9993.2002.01165.x
R Development Core Team. 2018. R: A language and environment for statistical computing. Version 2.13. User’s guide and application published: http://www.R-project.org.
Rafael, J. A., Melo, G. A. R., Carvalho, C. J. B., Casari, S. A., & Constantino, R. 2012. Insetos do Brasil: Diversidade e Taxonomia. Ribeirão Preto, Holos Editora: p. 810.
Rivera, G., Elliott, S., Caldas, L. S., Nicolssi, G., Coradin, V. T. R., & Borcehrt, R. 2002. Increasing day-length induces spring flushing of tropical dry forest trees in the absence of rain. Trends in Ecology and Evolution, 16(7), 445–456. DOI: 10.1007/s00468-002-0185-3
Silva, J. O., Espírito-Santo, M. M., & Melo, G. A. 2012. Herbivory on Handroanthus ochraceus (Bignoniaceae) along a successional gradient in a tropical dry forest. Arthropod-Plant Interactions, 6(1), 45–57. DOI: 10.1007/s11829-011-9160-5
Silva, N. A. P., Frizzas, M. R., & Oliveira, C. M. 2011. Seasonality in insect abundance in the "Cerrado" of Goiás State, Brazil. Revista Brasileira de Entomologia, 55(1), 79–87. DOI: 10.1590/S0085-56262011000100013
van Schaik, C. P., Terborgh, J. W., & Wright, S. J. 1993. The phenology of tropical forests: adaptive significance and consequences for primary consumers. Annual Review of Ecology and Systematics, 24(1), 353–377. DOI: 10.1146/annurev.es.24.110193.002033
van Asch, M., & Visser, M. E. 2007. Phenology of forest caterpillars and their host trees: the importance of synchrony. Annual Review Entomology, 52(1), 37–55. DOI: 10.1146/annurev.ento.52.110405.091418
Vasconcellos, A., Andreazze, R., Almeida, A. M., Araujo, H. F., Oliveira, E. S., & Oliveira, U. 2010. Seasonality of insects in the semi-arid Caatinga of northeastern Brazil. Revista Brasileira de Entomologia, 54(3), 471–476. DOI: 10.1590/S0085-56262010000300019
Wolda, H. 1978. Seasonal fluctuations in rainfall, food and abundance of tropical insects. Journal of Animal Ecology, 47, 369–381. DOI: 10.2307/3789
Wolda, H. 1988. Insect seasonality: Why? Annual Review Ecology Systematics, 19(1), 1–18. DOI: 10.1146/annurev.es.19.110188.000245
Yukawa, J. 2000. Synchronization of gallers with host plant phenology. Population Ecology, 42(2), 105–113. DOI: 10.1007/PL00011989