• Marciel Elio Rodrigues Universidade Estadual de Santa Cruz
  • Emanuelle Batista Moura Universidade Federal de Mato Grosso do Sul
  • Fabio Oliveira Roque Universidade Federal de Mato Grosso do Sul




aquatic insects, bioindicators, Odonata, palm swamps, riparian vegetation


Veredas (palm swamps) play a critical role in maintaining the hydrological system and they are considered the cradle of the waters of the Brazilian Cerrado. Currently, veredas are suffering intense human pressure due to the conversion of native landscapes for other land uses as agriculture, pasture and urban environments. Few studies have evaluated the biodiversity of veredas and the current effects of human impact, especially on aquatic communities. Dragonflies and damselflies (Odonata) have excelled as bioindicators of environmental quality and they are increasingly used in environmental monitoring programs. In this study, we evaluate whether loss of riparian vegetation around the vereda areas alters the communities of Odonata and whether the species can be considered bioindicators of these environmental conditions. Our hypothesis is that eco-physiological and behavioral characteristics, such as thermoregulation capacity and oviposition behavior, influence the persistence of species in communities in natural or altered environments. We sampled 25 veredas and classified them into two groups, namely “preserved riparian vegetation” (VRP), when the riparian vegetation surrounding the sampled stretch was 30 meters or more, and “altered riparian vegetation” (VRA), when the vegetation extended for less than 30 meters from at least one of the banks. Our results showed that the composition of the communities in areas classified as VRP was more similar to each other and different from the communities found in the areas classified as VRA. Of the 52 species observed, 11 species responded as indicators for preserved or altered riparian vegetation. Of these species, four were indicative of areas with preserved riparian vegetation and seven were indicative of veredas with altered riparian vegetation. Our results show that the composition of dragonflies and damselflies, and some taxa in particular may be potential indicators of the condition of veredas, and may, therefore, be included in vereda monitoring programs in Central-Western Brazil.


Allan, J. D. 2004. Landscapes and riverscapes: The influence of land use on stream ecosystems. Annual Review of Ecology, Evolution, and Systematics, 35(1), 257-284. DOI: 10.1146/annurev.ecolsys.35.120202

Bastos, L. A., & Ferreira, I. M. 2010. Composição fitofisionômica do bioma Cerrado: Estudo sobre o subsistema de Vereda. Revista Espaço, 12, 97-108.

Brasil, 2012. Código Florestal, Lei Nº 12.651, de 25 de maio de 2012. Retrieved from www.planalto.gov.br/ccivil_03/_ato2011-2014/2012/lei/112651.htm

Cabette, H. S. R., Souza, R. J., Shimano, Y., & Juen, L. 2017. Effects of changes in the riparian forest on the butterfly community (Insecta: Lepidoptera) in Cerrado areas. Revista Brasileira Entomologia, 61, 43-50. DOI: 10.1016/j.rbe.2016.10.004

Cáceres, M., Legendre, P., & Moretti, M. 2010. Improving indicator species analysis by combining groups of sites. Oikos, 119(10), 1674-1684. DOI: 10.1111/j.1600-0706.2010.18334.x

Calvão, L. B., Juen, L., Oliveira-Junior, J. M. B., Batista, J. D., & De Marco, P. 2018. Land use modifies Odonata diversity in streams of the Brazilian Cerrado. Journal Insect Conservation, 22, 1-11. DOI: 10.1007/s10841-018-0093-5

Carvalho, F. G., Pinto, N. S., Oliveira-Junior, J. M. B., & Juen, L. 2013. Effects of marginal vegetation removal on Odonata communities. Acta Limnologic Brasiliense, 25, 10-18. DOI: 10.1590/S2179-975X2013005000013

Corbet, P. S. 2004. Dragonflies: behavior and ecology of Odonata. Ithaca, NY: Comstock Publishing Association: p. 829.

Côrtes, L. G., Almeida, M. C., Pinto, N. S., & De Marco, P. 2011. Fogo em veredas: avaliação de impactos sobre comunidades de Odonata (Insecta). Biodiversidade Brasileira, 1, 128-145.

De Marco. P., Latini, A. O., & Resende, D. C. 2005. Thermoregulatory constraints on behavior: patterns in a Neotropical dragonfly assemblage. Neotropical Entomology, 34, 155-162. DOI: 10.1590/S1519-566X2005000200002

De Marco, P., Batista, J. D., & Cabette, H. S. R. 2015. Community assembly of adult odonates in tropical streams: an ecophysiological hypothesis. PLoS ONE, 10, 1-17. DOI: 10.1371/journal.pone.0123023

Dutra, S., & De Marco, P. 2015. Bionomic differences in odonates and their influence on the efficiency of indicator species of environmental quality. Ecological Indicator, 49, 132-142. DOI: 10.1016/j.ecolind.2014.09.016

Garrison, R. W., von Ellenrieder, N., & Louton, J. A. 2006. Dragonfly genera of the New World: An illustrated and annotated key to the Anisoptera. Baltimore: The Johns Hopkins University Press: p. 368.

Garrison, R. W., von Ellenrieder, N., & Louton, J. A. 2010. Damselfly genera of the New World: An illustrated and annotated key to the Zygoptera. Baltimore: The John Hopkins University: p. 490.

Gerlach, J., Samways, M., & Pryke, J. 2013. Terrestrial invertebrates as bioindicators: an overview of available. Journal Insect Conservation, 17, 831-850. DOI: 10.1007/s10841-013-9565-9

Junk, W. J., An, S., Finlayson, C. M., Gopal, B., Kve, J. T., Mitchell, S. A., Mitsch, W. J., & Robarts, R. D. 2013. Current state of knowledge regarding the world’s wetlands and their future under global climate change: a synthesis. Aquatic Sciences, 75, 151-167. DOI: 10.1007/s00027-012-0278-z

Kompier, T. 2015. A guide to the dragonflies and damselflies of the Serra dos Órgãos South-eastern Brazil. Rio de Janeiro: REGUA Publications: p. 379.

Lencioni, F. A. A. 2005. Damselflies of Brazil: An illustrated identification guide 1 Non-Coenagrionidae families. São Paulo: All Print Editora: p. 324.

Lencioni, F. A. A. 2006. Damselflies of Brazil: An illustrated identification guide 2 Coenagrionidae families. São Paulo: All Print Editora: p. 429.

Lozano, F., & Rodrigues, M. E. 2018. Acanthagrion marinae sp. nov. (Zygoptera: Coenagrionidae): A new species of the apicale group. Annals of the Brazilian Academy of Sciences, 90(3), 2865-2872. DOI: 10.1590/0001-3765201820170715

May, M. L.1991. Thermal adaptations of dragonflies, revisited. Advance in Odonatology, 5, 71-88.

Myers, N., Mittermeier, R. A., Mittermeier, C. G., Fonseca, G. A. B., & Kent, J. 2000. Biodiversity hotspots for conservation priorities. Nature, 403, 853-858. DOI: 10.1038/35002501

Millennium Ecosystem Assessment. 2005. Ecosystems and human well-being: Biodiversity synthesis. Washington, DC: p. 68.

Monteiro-Junior, C. S., Juen, L., & Hamada, N. 2014. Effects of urbanization on stream habitats and associated adult dragonfly and damselfly communities in central Brazilian Amazonia. Landscape Urban Planning, 127, 28-40. DOI: 10.1016/j.landurbplan.2014.03.006

Monteiro-Junior, C. S., Juen, L., & Hamada, N. 2015. Analysis of urban impacts on aquatic habitats in the central Amazon basin: Adult odonates as bioindicators of environmental quality. Ecological Indicator, 48, 303-311. DOI: 10.1016/j.ecolind.2014.08.021

Meirelles, M. L., Ferreira, A. B., & Franco, A. C. 2006. Dinâmica sazonal do carbono em campo úmido do Cerrado. Planaltina, DF: Embrapa Cerrados: p. 32.

Oliveira-Filho, A. T., & Ratter, J. A. 2002. Vegetation physiognomies and woody flora of the Cerrado biome. In: P. S. Oliveira & R. J. Marquis (Eds.), The Cerrados of Brazil. pp. 91-120. New York: Columbia University Press.

Oertli, B. 2008. The use of dragonflies in the assessment and monitoring of aquatic habitats. In: A. Cordoba-Aguilar (Ed.), Model organisms for ecological and evolutionary research, pp. 79-95. Oxford: Oxford University Press.

Overbeck, G. E., Vélez-Martin, E., Scarano, F. R., Lewinsohn, T. M., Fonseca, C. R., Meyer, S. T., Müller, S. C., Ceotto, P., Dadalt, L., Durigan, G., & Ganade, G. 2015. Conservation in Brazil needs to include non-forest ecosystems. Diversity and Distributions, 21(12), 1455-1460. DOI: 10.1111/ddi.12380

Rodrigues, M. E., Roque, O. F., Quintero, J. M. O., Pena, J. C. C., Sousa, D. C., & De Marco, P. 2016. Nonlinear responses in damselfly community along a gradient of habitat loss in a savanna landscape. Biological Conservation, 194, 113-120. DOI: 10.1016/j.biocon.2015.12.001

Rodrigues, M. E., Roque, F. O., Guillermo-Ferreira, R., Saito, V. S., & Samways, M. J. 2018a. Egg-laying traits reflect shifts in dragonfly assemblages in response to different amount of tropical forest cover. Insect Conservation and Diversity, 11(5), 1-10. DOI: 10.1111/icad.12319

Rodrigues, M. E., Moura, B. E., Koroiva, R., Borges, P. A. C., & Roque, F. O. 2018b. Survey of dragonflies (Odonata) in palm swamps of Cerrado hotspot. Entomological News, 128(1), 24-38.

Rosenberg, D. M., & Resh, V.H. 1993. Introduction to freshwater biomonitoring and benthic macroinvertebrades. In: D. M. Rosenberg, & V. H. Resh (Eds.), Freshwater biomonitoring and benthic macroinvertebrates. pp.1-9. New York: Chapman and Hall.

Simaika, J. P., & Samways, M. J. 2009. Reserve selection using Red Listed taxa in three global biodiversity hotspots: dragonflies in South Africa. Biological Conservation, 142, 638-651. DOI: 10.1016/j.biocon.2008.11.012.

Simaika, J. P., & Samways, M. J. 2010. Comparative assessment of indices of freshwater habitat conditions using different invertebrate taxon sets. Ecological Indicators, 11, 370-378. DOI: 10.1016/j.ecolind.2010.06.005

Stevani, C.V., Faria, D. L. A., Porto, J. S., Trindade, D. J., & Bechara, E. J. H. 2000. Mechanism of automotive clearcoat damage by dragonfly eggs investigated by surface enhanced Raman scattering. Polymer Degradation and Stability, 68, 61-66. DOI: 10.1016/S0141-3910(99)00165-2

Strassburg, B. B., Brooks, T., Feltran-Barbieri, R., Iribarrem, A., Crouzeilles, R., Loyola, R., Soares-Filho, B., & Balmford, A. 2017. Moment of truth for the Cerrado hotspot. Nature Ecology and Evolution, 1(4), 1-3. DOI: 10.1038/s41559-017-0099

Valente-Neto, F., Roque, F. D. O., Rodrigues, M. E., Juen, L., & Swan, C. M. 2016. Toward a practical use of Neotropical odonates as bioindicators: testing congruence across taxonomic resolution and life stages. Ecological Indicator, 61, 952-959. DOI: 10.1016/j.ecolind.2015.10.052.

Valente-Neto, F., Rodrigues M. E., & Roque, F. O. 2018. Selecting indicators based on biodiversity surrogacy and environmental response in a riverine network: Bringing operationality to biomonitoring. Ecological Indicator, 94, 198-206. DOI: 10.1016/j.ecolind.2018.06.066

Van de Koken, A. F., Matos, F. A. R., & Martins, R. L. 2007. Comportamento de Pantala flavescens (Odonata, Anisoptera, Libellulidae) e perda do investimento reprodutivo em áreas antropizadas. Boletim Museu Biologia Mello Leitão, 21, 7-18.

Vilela, D. S., Ferreira, R. G., & Del-Claro, K. 2016. The Odonata community of a Brazilian vereda: seasonal patterns, species diversity and rarity in a palm swamp environment. Bioscience Journal 32, 486-495. DOI: 10.14393/BJ-v32n2a2016-30491

von Ellenrieder, N. 2009a. Protoneura tenuis. The IUCN Red List of Threatened Species 2009: eT159085A5308257.

von Ellenrieder, N. 2009b. Zenithoptera viola. The IUCN Red List of Threatened Species 2009: eT158961A5297670.

Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., Reidy, L. C., & Davies, P. M. 2010. Global threats to human water security and river biodiversity. Nature, 467, 555-561. DOI: 10.1038/nature09440