TOPOGRAPHY AND SEASONALITY PROMOTES TAXONOMIC BETA DIVERSITY OF SEEDLINGS IN A TROPICAL WETLAND

Authors

  • Francielli Bao Universidade Estadual Paulista
  • Pedro Manuel Villa Universidade Federal de Viçosa
  • Alice Cristina Rodrigues Universidade Federal de Viçosa,
  • Daniela Schmitz Universidade Federal de Viçosa
  • Marco Antonio de Assis Universidade Estadual Paulista
  • Rafael Arruda Universidade Federal de Mato Grosso
  • Arnildo Pott Universidade Federal de Mato Grosso do Sul

DOI:

https://doi.org/10.4257/oeco.2019.2304.15

Keywords:

flood disturbance, nestedness-resultant component, taxonomic turnover, topographical gradient

Abstract

Spatial and temporal beta diversity of seedlings in tropical wetland remain poorly understood. We assessed the ecological pattern of taxonomic beta diversity of seedling assemblages along a topographic gradient, seasonally flooded disturbance, and sampling years in a tropical wetland. We tested that seasonally flooded disturbance on seedling assemblage promotes a high taxonomic beta diversity due to a high taxonomic turnover along the topographical gradient. Here we examined a large database from 200 plots (each having 0.5 × 0.5 m), across eight seasonally flooded grasslands in the Pantanal of central-west Brazil. We selected data on ponds for four years at two characteristic hydrological phases per year: post-flood (July and
August), and post-dry season (October and November). We classified the topographical gradient into three levels 1) low—longer duration of flood; 2) mid—intermediate level; and 3) high—short duration of flood (dry soil). For both post-flood and post-dry seasons, we counted the number of seedlings within five plots at each topographic level. Additionally, taxonomic beta diversity was examined via novel abundance-based metrics (including both turnover and nestedness patterns). Overall, taxonomic beta diversity was consistently higher in high topographic level and post-dry season plots. We observed differences in beta diversity components between topographical levels, seasons and years. Topographical gradient and seasonally flooded promotes more variation in taxonomic turnover and beta diversity; due to these environmental filters we presume that the resulting beta diversity can be decisive in the species diversity in this tropical wetland.

Author Biography

Pedro Manuel Villa, Universidade Federal de Viçosa

Plant Biology

References

APG IV. 2016. An update of the Angiosperm Group classification for the orders and families of flowering plants: APG IV. Botanical Journal Linnean Society, 141, 399–436.

Anderson, M. J., Crist, T. O., Chase, J. M., Vellend, M., Inouye, B. D., Freestone, A. L., Sanders, N. J., Cornell, H. V., Comita, L. S., Davies, K. F., Harrison, S. P., Kraft, N. J. B., Stegen, J. C., & Swenson, N. G. 2011. Navigating the multiple meanings of beta diversity: a roadmap for the practicing ecologist. Ecology Letters, 14(1), 19–28. DOI: 10.1111/j.1461-0248.2010.01552.x

Arieira, J., Penha, J., Cunha, C., & Couto, E. G. 2016. Ontogenetic shifts in habitat-association of tree species in a neotropical wetland. Plant Soil, 404, 219–236. DOI: 10.1007/s11104-016-2844-y

Bao, F., Elsey-Quirk, T., Assis, M. A., Arruda, R., & Pott, A. 2018. Seasonal flooding, topography, and organic debris interact to influence the emergence and distribution of seedlings in a tropical grassland. Biotropica, 50(4), 616-624. DOI: 10.1111/btp.12550

Bao, F., Elsey-Quirk, T., Assis, M. A., Arruda, R., & Pott, A. 2018. Data from: Seasonal flooding, topography, and organic debris interact to influence the emergence and distribution of seedlings in a tropical grassland. Dryad Digital Repository. DOI: 10.5061/dryad.875257v.

Bao, F., Elsey-Quirk, T., Assis, M. A., & Pott, A. 2017. Seed bank of seasonally flooded grassland: Experimental simulation of flood and postflood. Aquatic Ecology, 52(1), 95–105. DOI: 10.1007/s10452-017-9647-y

Bao, F., Pott, A., Ferreira, F. A., & Arruda, R. 2014. Soil seed bank of floodable native and cultivated grassland in the Pantanal wetland: Effects of flood gradient, season and species invasion. Brazilian Journal of Botany, 37(3), 239–250. DOI: 10.1007/s40415-014-0076-z

Baselga, A. 2017. Partitioning abundance-based multiple-site dissimilarity into components: balanced variation in abundance and abundance gradients. Methods in Ecology and Evolution, 8(7), 799–808. DOI: 10.1111/2041-210X.12693

Baselga, A. 2012. The relationship between species replacement and dissimilarity derived from turnover and nestedness. Global Ecology and Biogeography, 21, 1223–1232. DOI: 10.1111/j.1466-8238.2011.00756.x

Baselga, A. 2010. Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 19(1), 134–143. DOI: 10.1111/j.1466-8238.2009.00490.x

Bates, D., Maechler, M., Ben Bolker, B., Walker, S., Christensen, R. H. B., Singmann, H., & Dai, B. 2017. ‘lme4’: Linear Mixed-Effects Models using 'Eigen' and S4. R package version 1.1-15. Retrieved on December 10, 2018, from https://cran.r-project.org/web/packages/lme4/lme4.pdf

Brown, C., Burslem, D., Illian, J. B., , ,Bao L., Brockelman, W., Cao, M., Chang, L. W., Dattaraja, H. S., Davies, S., Gunatilleke, C. V. S., Gunatilleke, I. A. U. N., Huang, J., Kassim, A. R., LaFrankie, J. V., Lian, J., Lin, L., Ma, K., Mi, X., Nathalang, A., Noor, S., Ong, P., Sukumar, R., Su, S. H., Sun, I. F., Suresh, H. S., Tan, S., Thompson, J., Uriarte, M., Valencia, R., Yap, S. L., Ye, & W., Law, R. 2013. Multispecies coexistence of trees in tropical forests: spatial signals of topographic niche differentiation increase with environmental heterogeneity. Proceedings of the Royal Society of London B - Biological Sciences, 280(1764). DOI: 10.1098/rspb.2013.0502

Capon, S. J., & Brock, M. A. 2006. Flooding, soil seed bank dynamics and vegetation resilience of a hydrologically variable desert floodplain. Freshwater Biology, 51, 206–223. DOI: 10.1111/j.1365-2427.2005.01484.x

Carvalho, J. C., Cardoso, P., & Gomes, P. 2012. Determining the relative roles of species replacement and species richness differences in generating beta-diversity patterns. Global Ecology and Biogeography, 21(1), 760–771. DOI: 10.1111/j.1466--8238.2011.00694.x

Casanova, M. T., & Brock, M. A. 2000. How do depth, duration and frequency of flooding influence the establishment of wetland plant communities? Plant Ecology, 147(2), 237–250. DOI: 10.1023/A:1009875226637

Crawley, M. J. 2013. The R Book. London: John Wiley & Sons: p. 951.

Girard, P., Fantin-Cruz, I., Oliveira, S. M. L., & Hamilton, S. K. 2010. Small-scale spatial variation of inundation dynamics in a floodplain of the Pantanal (Brazil). Hydrobiologia 638(1), 223–233. DOI: 10.1007/s10750-009-0046-9

Heino, J., Melo, A. S., & Bini, L. M. 2015. Reconceptualising the beta diversity environmental heterogeneity relationship in running water systems. Freshwater Biology, 60(2), 223–235. DOI: 10.1111/fwb.12502

Hervé, M., & Hervé, M. 2018. RVAideMemoire: testing and plotting procedures for biostatistics. – R package ver. 0.9-69. Retrieved on December 10, 2018, from https://cran.r project.org/web/packages/RVAideMemoire/RVAideMemoire.pdf

Hubbell, S. P. 2001. The unified neutral theory of biodiversity and ibogeography. Princeton: NJ Princeton University Press: p. 392.

Koleff, P., Gaston, K. J., & Lennon, J. J. 2003. Measuring beta diversity for presence–absence data. Journal of Animal Ecology, 72(3), 367–382. DOI: 10.1046/j.1365-2656.2003.00710.x

Middleton, B. A. 1999. Wetland restoration: Flood pulsing and disturbance dynamics. Hoboken: John Wiley and Sons: p. 388.

Myers, J. A., Chase, J. M., Crandall, R. M., & Jimenez, I. 2015. Disturbance alters beta-diversity but not the relative importance of community assembly mechanisms. Journal of Ecology, 103(5), 1291–1299. DOI: 10.1111/1365-2745.12436

Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, H.H, Szoecs, E., Wagner, H. 2018. Vegan: Community Ecology Package. R package version 2.0-7. https://CRAN.R-project.org/package=vegan

Pott, A., & Silva, J. S. V. 2015. Terrestrial and aquatic vegetation diversity of the Pantanal wetland. In: I. Bergier & M. L. Assine (Eds.), Dynamics of the Pantanal Wetland in South America. The Handbook of Environmental Chemistry, 37, 111–131. DOI: 10.1007/6982015352

R Core Team, 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from https://www.R-project.org/

Rodrigues, A. C., Villa P. M., & Viana, N. A. 2019a. Fine-scale topography shape richness, community composition, stem and biomass hyperdominant species in Brazilian Atlantic forest. Ecological Indicator, 102, 208-217. DOI: 10.1016/j.ecolind.2019.02.033

Rodrigues, A. C., Villa, P. M., Ali, A., Ferreira-Junior, W., & Neri, V. A. 2019b. Fine-scale habitat differentiation shapes the composition, structure and aboveground biomass but not species richness of a tropical Atlantic forest. Journal of Forestry Research, 1-13. DOI: 10.1007/s11676-019-00994-x

Silva, J. S. V., & Abdon, M. M. 1998. Delimitação do Pantanal Brasileiro e suas sub regiões. Pesquisa Agropecuária Brasileira, 33, 1703–1711.

Schupp, E. W. 1995. Seed-seedling conflicts, habitat choice, and patterns of plant recruitment. American Journal of Botany, 82(3), 399–40.

Targhetta, N., Kesselmeier, J., & Wittmann, F. 2015. Effects of the hydroedaphic gradient on tree species composition and aboveground wood biomass of oligotrophic forest ecosystems in the central Amazon basin. Folia Geobotanica, 50(3), 185–205. DOI: 10.1007/s12224-015-9225-9

Tonkin, J. D., Bogan, M. T., Bonada, N., Rios-Touma, B., & Lytle, D. A. 2017. Seasonality and predictability shape temporal species diversity. Ecology, 98(5), 1201–1216. DOI: 10.1002/ecy.1761

Tuomisto, H. 2010. A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography, 33(1), 2–22. DOI: 10.1111/j.1600-0587.2009.05880.x

Van der Valk, A. G. 1981. Succession in wetlands: a gleasonian approach. Ecology, 62(3), 688–696.

Vartapetian, B. B., & Jackson, M. B. 1997. Plant adaptations to anaerobic stress. Annals of Botany, 79(1), 3–20. DOI: 10.1093/oxfordjournals.aob.a010303

Villa, M. P., Muñoz, M. A, & Pigolotti, S. 2019. Bet-hedging strategies in expanding populations. PLoS Computational Biology, 15(4), e1006529. DOI: 10.1371/journal.pcbi.1006529

Villa, P. M., Pérez-Sánchez, A. J., Nava, F., Acevedo, A., & Cadenas, D. A. 2019. Local-scale seasonality shapes anuran community abundance in a cloud forest of the tropical Andes. Zoological Studies, 58, 1-17. DOI:10.6620/ZS.2019.58-17.

Villa, P. M., Martins, S. V., Oliveira Neto, S. N., Rodrigues, A. C., Vieira, N., Delgado, L., Cancio, N. M., & Ali, A. 2018. Woody species diversity as an indicator of the forest recovery after shifting cultivation disturbance in the northern Amazon. Ecological Indicator, 95, 687–694. DOI: 10.1016/j.ecolind.2018.08.005

Villéger, S., Grenouillet, G., & Brosse, S. 2013. Decomposing functional b-diversity reveals that low functional b-diversity is driven by low functional turnover in European fish assemblages. Global Ecology and Biogeography, 22(6), 671–681. DOI: 10.1111/geb.12021

Wittmann, F., & Junk, W. J. 2003. Sapling communities in Amazonian white-water forests. Journal of Biogeography, 30(10), 1533–1544.

Downloads

Additional Files

Published

2019-12-16