COMO TREINAR SUA ABELHA: MÉTODOS APLICADOS À BIOLOGIA COGNITIVA DA POLINIZAÇÃO
DOI:
https://doi.org/10.4257/oeco.2020.2401.04Keywords:
behavior, cognition, learning, memory, perceptionAbstract
As abelhas são os principais vetores bióticos da polinização, fenômeno extremamente importante para a manutenção dos sistemas naturais e também para a produção de alimentos. Durante décadas, estudos mostraram como as abelhas são notáveis quanto às suas capacidades cognitivas através de protocolos desenvolvidos para se entender o comportamento, aprendizado e memória desses insetos. O objetivo desta revisão é apresentar as bases dos experimentos de cognição em abelhas, descrevendo protocolos clássicos, novas abordagens e estudos empíricos mostrando como o treinamento de abelhas pode ser aplicado à diferentes questões na biologia da polinização.
HOW TO TRAIN YOUR BEE: METHODS APPLIED TO THE COGNITIVE BIOLOGY OF POLLINATION. Bees are the major biotic pollination agents, an extremely important phenomenon to the maintenance of the natural systems and food production. For decades, studies have shown the remarkable cognition system of bees, and several protocols were developed to understand behavior, learning and memory of these insects. The aim of this review is to present the basis of cognitive experiments using bees as a model, describing classical protocols, new approaches and empiric studies showing how bee training can be applied to different questions on pollination biology.
References
Aguiar, J. M. R. B. V., Roselino, A. C., Sazima, M., & Giurfa, M. 2018. Can honey bees discriminate between floral-fragrance isomers? Journal of Experimental Biology, 221(14), jeb180844. DOI: 10.1242/jeb.180844
Aguiar, J. M. R. B. V., & Pansarin, E. R. 2019. Deceptive pollination of Ionopsis utricularioides (Oncidiinae: Orchidaceae). Flora: Morphology, Distribution, Functional Ecology of Plants, 250(1), 72–78. DOI: 10.1016/j.flora.2018.11.018
Avarguès-Weber, A., & Mota, T. 2016. Advances and limitations of visual conditioning protocols in harnessed bees. Journal of Physiology Paris, 110(3), 107-118. DOI: 10.1016/j.jphysparis.2016.12.006
Balamurali, G. S., Nicholls, E., Somanathan, H., & Ibarra, N. H. 2018. A comparative analysis of colour preferences in temperate and tropical social bees. The Science of Nature, 105(1-2), 1–8. DOI: 10.1007/s00114-017-1531-z
Baldelomar, M., Viana, M. L., & Telles, F. J. 2018. El rol de los compuestos orgánicos volátiles florales en las interacciones planta-insecto. Oecologia Australis, 22(4), 348–361. DOI: 10.4257/oeco.2018.2204.02
Bergamo, P. J., Telles, F. J., Arnold, S. E. J., & Brito, V. L. G. 2018. Flower colour within communities shifts from overdispersed to clustered along an alpine altitudinal gradient. Oecologia, 188(1), 223–235. DOI: 10.1007/s00442-018-4204-5
Blackawton, P. S., Airzee, S., Allen, A., Baker, S., Berrow, A., Blair, C., Churchill, M., Coles, J., Cumming, R. F. J., Fraquelli, L., Hackford, C., Hinton Mellor, A., Hutchcroft, M., Ireland, B., Jewsbury, D., Littlejohns, A., Littlejohns, G., Lotto, M., McKeown, J., O’Toole, A., Richards, H., Robbins-Davey, L., Roblyn, S., Rodwell-Lyn, H., Schenck, D., Springer, J., WishyA., Rodwell-Lynn, T., Strudwick, D., & Lotto, R. B. 2011. Blackawton bees. Biology Letters, 7(2), 168–172. DOI: 10.1098/rsbl.2010.1056
Briscoe, A. D., & Chittka, L. 2001. The evolution of color vision in insects. Annual Review of Entomology, 46(1), 471–510. DOI: 10.1146/annurev.ento.46.1.471
Brito, V. L. G., Weynans, K., Sazima, M., & Lunau, K. 2015. Trees as huge flowers and flowers as oversized floral guides: the role of floral color change and retention of old flowers in Tibouchina pulchra. Frontiers in Plant Science, 6(1), 1–10. DOI: 10.3389/fpls.2015.00362
Brito, V. L. G., Telles, F. J., & Lunau, K. 2014. Ecologia cognitiva da polinização. In: A. R. Rech, K. Agostini, P. E. Oliveira, & I. C. Machado (Eds.), Biologia da polinização. pp. 417–438. Rio de Janeiro: Projeto Cultural.
Buatois, A., Flumian, C., Schultheiss, P., Avarguès-Weber, A., & Giurfa, M. 2018. Transfer of visual learning between a virtual and a real environment in honey bees: the role of active vision. Frontiers in Behavioral Neuroscience, 12(1), 1–17. DOI: 10.3389/fnbeh.2018.00139
Buatois, A., Pichot, C., Schultheiss, P., Sandoz, J. C., Lazzari, C. R., Chittka, L., Avarguès-Weber, A., & Giurfa, M. 2017. Associative visual learning by tethered bees in a controlled visual environment. Scientific Reports, 7(1), 12903. DOI: 10.1038/s41598-017-12631-w
Chittka, L. 1997. Bee color vision is optimal for coding flower color, but flower colors are not optimal for being coded—why? Israel Journal of Plant Sciences, 45(2-3), 115–127. DOI: 10.1080/07929978.1997.10676678
Chittka, L., Faruq, S., Skorupski, P., & Werner, A. 2014. Colour constancy in insects. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 200(6), 435–448. DOI: 10.1007/s00359-014-0897-z
Chittka, L., & Thomson, J. D. 2004. Cognitive ecology of pollination: animal behavior and floral evolution. New York: Cambridge University Press: p. 344. DOI: 10.1046/j.1439-0310.2002.00774.x
Chittka, L., Thomson, J. D., & Waser, N. M. 1999. Flower constancy, insect psychology, and plant evolution. Naturwissenschaften, 86(8), 361–377. DOI: 10.1007/s001140050636
Dormont, L., Delle-Vedove, R., Bessière, J. M., & Schatz, B. 2014. Floral scent emitted by white and coloured morphs in orchids. Phytochemistry, 100(1), 51–59. DOI: 10.1016/j.phytochem.2014.01.009
Dyer, A. G., Garcia, J. E., Shrestha, M., & Lunau, K. 2015. Seeing in colour: a hundred years of studies on bee vision since the work of the Nobel laureate Karl von Frisch. Proceedings of the Royal Society of Victoria, 127(1), 66. DOI: 10.1071/RS15006
Farina, W. M., Grüater, C., & Díaz, P. C. 2005. Social learning of floral odours inside the honeybee hive. Proceedings of the Royal Society B: Biological Sciences, 272(1575), 1923–1928. DOI: 10.1098/rspb.2005.3172
Frisch, K. 1914. Der farbensinn und Formensinn der Biene. Zoologische Jahrbücher. Abteilung für Allgemeine Zoologie und Physiologie der Tiere: p. 182.
Gawryszewski, F. M. 2018. Color vision models: Some simulations, a general n- dimensional model, and the colourvision R package. Ecology and Evolution, 8(1) 8159–8170. DOI: 10.1002/ece3.4288
Giurfa, M., Núñez, J., Chittka, L., & Menzel, R. 1995. Colour preferences of flower-naive honeybees. Journal of Comparative Physiology A, 177(3), 247–259. DOI: 10.1007/BF00192415
Giurfa, M., Vorobyev, M., Kevan, P. G., & Menzel, R. 1996. Detection of coloured stimuli by honeybees: minimum visual angles and receptor specific contrasts. Journal of Comparative Physiology A, 178(5), 699–709.
Giurfa, M. 2004. Conditioning procedure and color discrimination in the honeybee Apis mellifera. Naturwissenschaften, 91(5), 228–231. DOI: 10.1007/s00114-004-0530-z
Giurfa, M. 2007. Behavioral and neural analysis of associative learning in the honeybee: a taste from the magic well. Journal of Comparative Physiology A, 193(8), 801–24. DOI: 10.1007/s00359-007-0235-9
Giurfa, M., Zhang, S., Jenett, A., Menzel, R., & Srinivasan, M. V. 2001. The concepts of “sameness” and “difference” in an insect. Nature, 410(6831), 930–933. DOI: 10.1038/35073582
Guerrieri, F., Lachnit, H., Gerber, B., & Giurfa, M. 2005. Olfactory blocking and odorant similarity in the honeybee. Learning and Memory, 12(2), 86–95. DOI: 10.1101/lm.79305
Gumbert, A. 2000. Color choices by bumble bees (Bombus terrestris): innate preferences and generalization after learning. Behavioral Ecology and Sociobiology, 48(1), 36–43. DOI: 10.1007/s002650000213
Heinrich, B. 1975. Bee flowers: a hypothesis on flower variety and blooming times. Evolution, 29(2), 325–334. DOI: 10.2307/2407220
Henske, J., Krausa, K., Hager, F. A., Nkoba, K., & Kirchner, W. H. 2015. Olfactory associative learning in two African stingless bee species (Meliponula ferruginea and M. bocandei, Meliponini). Insectes Sociaux, 62(4), 507–516. DOI: 10.1007/s00040-015-0430-6
Hrncir, M., Jarau, S., Zucchi, R., & Barth, F. G. 2004. Thorax vibrations of a stingless bee (Melipona seminigra). II. Dependence on sugar concentration. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 190(7), 549–560. DOI: 10.1007/s00359-004-0515-6
Kemp, D. J., Herberstein, M. E., Fleishman, L. J., Endler, J. A., Bennett, A. T. D., Dyer, A. G., Hart, N. S., Marshall, J., & Whiting, M. J. 2015. An integrative framework for the appraisal of coloration in nature. The American Naturalist, 185(6), 705–724. DOI: 10.1086/681021
Koethe, S., Bossems, J., Dyer, A. G., & Lunau, K. 2016. Colour is more than hue: preferences for compiled colour traits in the stingless bees Melipona mondury and M. quadrifasciata. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 202(9-10), 615–627. DOI: 10.1007/s00359-016-1115-y
Land, M. F., & Nilsson, D. E. 2002. Animal eyes. London: Oxford University Press: p. 221.
Lehrer, M., Horridge, G. A., Zhang, S. W., & Gadagkar, R. 1995. Shape vision in bees: innate preference for flower-like patterns. Philosophical Transactions of the Royal Society B: Biological Sciences, 347(1320), 123–137. DOI: 10.1098/rstb.1995.0017
Locatelli, F. F., Fernandez, P. C., & Smith, B. H. 2016. Learning about natural variation of odor mixtures enhances categorization in early olfactory processing. Journal of Experimental Biology, 219(17), 2752–2762. DOI: 10.1242/jeb.141465
Lunau, K., Fieselmann, G., Heuschen, B., & Loo, A. 2006. Visual targeting of components of floral colour patterns in flower-naïve bumblebees (Bombus terrestris; Apidae). Naturwissenschaften, 93(7), 325–8. DOI: 10.1007/s00114-006-0105-2
Maisonnasse, A., Lenoir, J. C., Beslay, D., Crauser, D., & Conte, Y. 2010. E-β-ocimene, a volatile brood pheromone involved in social regulation in the honey bee colony (Apis mellifera). PLoS ONE, 5(10), e13531. DOI: 10.1371/journal.pone.0013531
Matsumoto, Y., Menzel, R., Sandoz, J. C., & Giurfa, M. 2012. Revisiting olfactory classical conditioning of the proboscis extension response in honey bees: a step toward standardized procedures. Journal of Neuroscience Methods, 211(1), 159–167. DOI: 10.1016/j.jneumeth.2012.08.018
Melo, L. R. F., Guimarães, B. M. C., Barônio, G. J., Oliveira, L. C., Cardoso, R. K. O. A., Araújo, T. N., & Telles, F. J. 2018. Como as abelhas percebem as flores e por que isto é importante? Oecologia Australis, 22(4), 362–389. DOI: 10.4257/oeco.2018.2204.03
Menzel, R., Manz, G., Menzel, R., & Greggers, U. 2001. Massed and spaced learning in honeybees: the role of CS, US, the intertrial interval, and the test interval. Learning and Memory, 8(4), 198–208. DOI: 10.1101/lm.40001
Muth, F., Cooper, T. R., Bonilla, R. F., & Leonard, A. S. 2018. A novel protocol for studying bee cognition in the wild. Methods in Ecology and Evolution, 9(1), 78–87. DOI: 10.1111/2041-210X.12852
Nicholls, E., & Ibarra, N. H. 2016. Assessment of pollen rewards by foraging bees. Functional Ecology, 31(1), 76–87. DOI: 10.1111/1365-2435.12778
Ollerton, J., Winfree, R., & Tarrant, S. 2011. How many flowering plants are pollinated by animals? Oikos, 120(3), 321–326. DOI: 10.1111/j.1600-0706.2010.18644.x
Pavlov, I. P. 1927. Conditioned reflexes. London: Oxford University Press: p. 448.
Raguso, R. A. 2008. Wake up and smell the roses: the ecology and evolution of floral scent. Annual Review of Ecology, Evolution and Systematics, 39(1), 549–569. DOI: 10.1146/annurev.ecolsys.38.091206.095601
Rath, L., Galizia, G. C., & Szyszka, P. 2011. Multiple memory traces after associative learning in the honey bee antennal lobe. European Journal of Neuroscience, 34(2), 352–360. DOI: 10.1111/j.1460-9568.2011.07753.x
Rech, A. R., Agostini, K., Oliveira, P. E., & Machado, I. C. 2014a. Biologia da polinização. Rio de Janeiro: Projeto Cultural: p. 527.
Rech, A. R., Bergamo, P. J., & Figueiredo, R. A. 2014b. Polinização abiótica. In: A. R. Rech, K. Agostini, P. E. Oliveira, & I. C. Machado (Eds.), Biologia da polinização. pp. 103–204. Rio de Janeiro: Projeto Cultural.
Rech, A. R., Dalsgaard, B., Sandel, B., Sonne, J., Svenning, J. C., Holmes, N., & Ollerton, J. 2016. The macroecology of animal versus wind pollination: ecological factors are more important than historical climate stability. Plant Ecology and Diversity, 9(3), 253–262. DOI: 10.1080/17550874.2016.1207722
Rodríguez, I., Gumbert, A., Ibarra, N. H., Kunze, J., & Giurfa, M. 2004. Symmetry is in the eye of the beeholder: innate preference for bilateral symmetry in flower-naïve bumblebees. Naturwissenschaften, 91(8), 374–7. DOI: 10.1007/s00114-004-0537-5
Roselino, A. C., Rodrigues, A. V., & Hrncir, M. 2016. Stingless bees (Melipona scutellaris) learn to associate footprint cues at food sources with a specific reward context. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 202(9-10), 657–666. DOI: 10.1007/s00359-016-1104-1
Salzmann, C. C., Nardella, A. M., Cozzolino, S., & Schiestl, F. P. 2007. Variability in floral scent in rewarding and deceptive orchids: the signature of pollinator-imposed selection? Annals of Botany, 100(4), 757–765. DOI: 10.1093/aob/mcm161
Sanchez, M. G. B. , Serre, M., Avargues-Weber, A., Dyer, A. G., & Giurfa, M. 2015. Learning context modulates aversive taste strength in honey bees. Journal of Experimental Biology, 218(6), 949–959. DOI: 10.1242/jeb.117333
Skinner, B. F. 1938. The behavior of organisms. New York: Appleton.
Sletvold, N., Trunschke, J., Smit, M., Verbeek, J., & Ågren, J. 2016. Strong pollinator-mediated selection for increased flower brightness and contrast in a deceptive orchid. Evolution, 70(3), 716–724. DOI: 10.1111/evo.12881
Stach, S., & Giurfa, M. 2005. The influence of training length on generalization of visual feature assemblies in honeybees. Behavioural Brain Research, 161(1), 8–17. DOI: 10.1016/j.bbr.2005.02.008
Stavenga, D. G. 1992. Eye regionalization and spectral tuning of retinal pigments in insects. Trends in Neurosciences, 15(6), 213–8. DOI: 10.1016/0166-2236(92)90038-A
Szyszka, P., Gerkin, R. C., Galizia, C. G., & Smith, B. H. 2014. High-speed odor transduction and pulse tracking by insect olfactory receptor neurons. Proceedings of the National Academy of Sciences, 111(47), 16925–16930. DOI: 10.1073/pnas.1412051111
Takeda, K. 1961. Classical conditioned response in the honey bee. Journal of Insect Physiology, 6(3), 168–179. DOI: 10.1016/0022-1910(61)90060-9
Telles, F. J., Corcobado, G., Trillo, A., & Rodríguez-Gironés, M. A. 2017. Multimodal cues provide redundant information for bumblebees when the stimulus is visually salient, but facilitate red target detection in a naturalistic background. PLoS ONE, 12(9), e0184760. DOI: 10.1371/journal.pone.0184760
Telles, F. J., & Rodríguez-Gironés, M. A. 2015. Insect vision models under scrutiny: what bumblebees (Bombus terrestris terrestris L.) can still tell us. The Science of Nature, 102(1-2), 1256. DOI: 10.1007/s00114-014-1256-1
Turner, C. H. 1910. Experiments on color-vision of the honey bee. The Biological Bulletin, 19(5), 257-279.
Vieira, A. R., Salles, N., Borges, M., & Mota, T. 2018. Visual discrimination transfer and modulation by biogenic amines in honeybees. Journal of Experimental Biology, 221(9), jeb178830. DOI: 10.1242/jeb.178830
Weiss, M. R. 1991. Floral colour changes as cues for pollinators. Nature, 354(6350), 227–229. DOI: 10.1038/354227a0
Weiss, M. R. 2001. Vision and learning in some neglected pollinators: beetles, flies, moths, and butterflies. In: L. Chittka & J. D. Thomson (Eds.), Cognitive ecology of pollination: animal behavior and floral evolution. pp. 171-190. New York: Cambridge University Press.
Weiss, M. R., & Lamont, B. B. 1997. Floral color change and insect pollination: a dynamic relationship. Israel Journal of Plant Sciences, 45(2-3), 185–199. DOI: 10.1080/07929978.1997.10676683
Wester, P., & Lunau, K. 2017. Plant–pollinator communication. Advances in Botanical Research, 82(1), 225–257. DOI: 10.1016/bs.abr.2016.10.004
Willmer, P. 2011. Pollination and floral ecology. Princeton: Princeton University Press: p. 792.