COMO TREINAR SUA ABELHA: MÉTODOS APLICADOS À BIOLOGIA COGNITIVA DA POLINIZAÇÃO

Authors

  • João Marcelo Robazzi Bignelli Valente Aguiar Universidade Estadual de Campinas, Instituto de Biologia, Programa de Pós-Graduação em Ecologia, Av. Bertrand Russel, s/n, CP 6109, Cidade Universitária Zeferino Vaz, CEP 13083-865, Campinas, SP, Brasil. e Université Paul Sabatier - Toulouse III, Centre de Recherches sur la Cognition Animale, Bât 4R3, 118 route de Narbonne, Toulouse, França.
  • Francismeire Jane Telles Universidade Federal de Uberlândia, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Ecologia e Conservação de Recursos Naturais, Campus Umuarama, Bloco 2D, sala 26, CEP 38400-902, Uberlândia, MG, Brasil.
  • Pedro Joaquim Bergamo Universidade Estadual de Campinas, Instituto de Biologia, Programa de Pós-Graduação em Ecologia, Av. Bertrand Russel, s/n, CP 6109, Cidade Universitária Zeferino Vaz, CEP 13083-865, Campinas, SP, Brasil.
  • Vinícius Lourenço Garcia de Brito Universidade Federal de Uberlândia, Instituto de Ciências Biológicas, Campus Umuarama, Bloco 2D, sala 26, CEP 38400-902, Uberlândia, MG, Brasil.
  • Marlies Sazima Universidade Estadual de Campinas, Instituto de Biologia, Av. Bertrand Russel, s/n, CP 6109, Cidade Universitária Zeferino Vaz, CEP 13083-865, Campinas, SP, Brasil.

DOI:

https://doi.org/10.4257/oeco.2020.2401.04

Keywords:

behavior, cognition, learning, memory, perception

Abstract

As abelhas são os principais vetores bióticos da polinização, fenômeno extremamente importante para a manutenção dos sistemas naturais e também para a produção de alimentos. Durante décadas, estudos mostraram como as abelhas são notáveis quanto às suas capacidades cognitivas através de protocolos desenvolvidos para se entender o comportamento, aprendizado e memória desses insetos. O objetivo desta revisão é apresentar as bases dos experimentos de cognição em abelhas, descrevendo protocolos clássicos, novas abordagens e estudos empíricos mostrando como o treinamento de abelhas pode ser aplicado à diferentes questões na biologia da polinização.

HOW TO TRAIN YOUR BEE: METHODS APPLIED TO THE COGNITIVE BIOLOGY OF POLLINATION. Bees are the major biotic pollination agents, an extremely important phenomenon to the maintenance of the natural systems and food production. For decades, studies have shown the remarkable cognition system of bees, and several protocols were developed to understand behavior, learning and memory of these insects. The aim of this review is to present the basis of cognitive experiments using bees as a model, describing classical protocols, new approaches and empiric studies showing how bee training can be applied to different questions on pollination biology.

References

Aguiar, J. M. R. B. V., Roselino, A. C., Sazima, M., & Giurfa, M. 2018. Can honey bees discriminate between floral-fragrance isomers? Journal of Experimental Biology, 221(14), jeb180844. DOI: 10.1242/jeb.180844

Aguiar, J. M. R. B. V., & Pansarin, E. R. 2019. Deceptive pollination of Ionopsis utricularioides (Oncidiinae: Orchidaceae). Flora: Morphology, Distribution, Functional Ecology of Plants, 250(1), 72–78. DOI: 10.1016/j.flora.2018.11.018

Avarguès-Weber, A., & Mota, T. 2016. Advances and limitations of visual conditioning protocols in harnessed bees. Journal of Physiology Paris, 110(3), 107-118. DOI: 10.1016/j.jphysparis.2016.12.006

Balamurali, G. S., Nicholls, E., Somanathan, H., & Ibarra, N. H. 2018. A comparative analysis of colour preferences in temperate and tropical social bees. The Science of Nature, 105(1-2), 1–8. DOI: 10.1007/s00114-017-1531-z

Baldelomar, M., Viana, M. L., & Telles, F. J. 2018. El rol de los compuestos orgánicos volátiles florales en las interacciones planta-insecto. Oecologia Australis, 22(4), 348–361. DOI: 10.4257/oeco.2018.2204.02

Bergamo, P. J., Telles, F. J., Arnold, S. E. J., & Brito, V. L. G. 2018. Flower colour within communities shifts from overdispersed to clustered along an alpine altitudinal gradient. Oecologia, 188(1), 223–235. DOI: 10.1007/s00442-018-4204-5

Blackawton, P. S., Airzee, S., Allen, A., Baker, S., Berrow, A., Blair, C., Churchill, M., Coles, J., Cumming, R. F. J., Fraquelli, L., Hackford, C., Hinton Mellor, A., Hutchcroft, M., Ireland, B., Jewsbury, D., Littlejohns, A., Littlejohns, G., Lotto, M., McKeown, J., O’Toole, A., Richards, H., Robbins-Davey, L., Roblyn, S., Rodwell-Lyn, H., Schenck, D., Springer, J., WishyA., Rodwell-Lynn, T., Strudwick, D., & Lotto, R. B. 2011. Blackawton bees. Biology Letters, 7(2), 168–172. DOI: 10.1098/rsbl.2010.1056

Briscoe, A. D., & Chittka, L. 2001. The evolution of color vision in insects. Annual Review of Entomology, 46(1), 471–510. DOI: 10.1146/annurev.ento.46.1.471

Brito, V. L. G., Weynans, K., Sazima, M., & Lunau, K. 2015. Trees as huge flowers and flowers as oversized floral guides: the role of floral color change and retention of old flowers in Tibouchina pulchra. Frontiers in Plant Science, 6(1), 1–10. DOI: 10.3389/fpls.2015.00362

Brito, V. L. G., Telles, F. J., & Lunau, K. 2014. Ecologia cognitiva da polinização. In: A. R. Rech, K. Agostini, P. E. Oliveira, & I. C. Machado (Eds.), Biologia da polinização. pp. 417–438. Rio de Janeiro: Projeto Cultural.

Buatois, A., Flumian, C., Schultheiss, P., Avarguès-Weber, A., & Giurfa, M. 2018. Transfer of visual learning between a virtual and a real environment in honey bees: the role of active vision. Frontiers in Behavioral Neuroscience, 12(1), 1–17. DOI: 10.3389/fnbeh.2018.00139

Buatois, A., Pichot, C., Schultheiss, P., Sandoz, J. C., Lazzari, C. R., Chittka, L., Avarguès-Weber, A., & Giurfa, M. 2017. Associative visual learning by tethered bees in a controlled visual environment. Scientific Reports, 7(1), 12903. DOI: 10.1038/s41598-017-12631-w

Chittka, L. 1997. Bee color vision is optimal for coding flower color, but flower colors are not optimal for being coded—why? Israel Journal of Plant Sciences, 45(2-3), 115–127. DOI: 10.1080/07929978.1997.10676678

Chittka, L., Faruq, S., Skorupski, P., & Werner, A. 2014. Colour constancy in insects. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 200(6), 435–448. DOI: 10.1007/s00359-014-0897-z

Chittka, L., & Thomson, J. D. 2004. Cognitive ecology of pollination: animal behavior and floral evolution. New York: Cambridge University Press: p. 344. DOI: 10.1046/j.1439-0310.2002.00774.x

Chittka, L., Thomson, J. D., & Waser, N. M. 1999. Flower constancy, insect psychology, and plant evolution. Naturwissenschaften, 86(8), 361–377. DOI: 10.1007/s001140050636

Dormont, L., Delle-Vedove, R., Bessière, J. M., & Schatz, B. 2014. Floral scent emitted by white and coloured morphs in orchids. Phytochemistry, 100(1), 51–59. DOI: 10.1016/j.phytochem.2014.01.009

Dyer, A. G., Garcia, J. E., Shrestha, M., & Lunau, K. 2015. Seeing in colour: a hundred years of studies on bee vision since the work of the Nobel laureate Karl von Frisch. Proceedings of the Royal Society of Victoria, 127(1), 66. DOI: 10.1071/RS15006

Farina, W. M., Grüater, C., & Díaz, P. C. 2005. Social learning of floral odours inside the honeybee hive. Proceedings of the Royal Society B: Biological Sciences, 272(1575), 1923–1928. DOI: 10.1098/rspb.2005.3172

Frisch, K. 1914. Der farbensinn und Formensinn der Biene. Zoologische Jahrbücher. Abteilung für Allgemeine Zoologie und Physiologie der Tiere: p. 182.

Gawryszewski, F. M. 2018. Color vision models: Some simulations, a general n- dimensional model, and the colourvision R package. Ecology and Evolution, 8(1) 8159–8170. DOI: 10.1002/ece3.4288

Giurfa, M., Núñez, J., Chittka, L., & Menzel, R. 1995. Colour preferences of flower-naive honeybees. Journal of Comparative Physiology A, 177(3), 247–259. DOI: 10.1007/BF00192415

Giurfa, M., Vorobyev, M., Kevan, P. G., & Menzel, R. 1996. Detection of coloured stimuli by honeybees: minimum visual angles and receptor specific contrasts. Journal of Comparative Physiology A, 178(5), 699–709.

Giurfa, M. 2004. Conditioning procedure and color discrimination in the honeybee Apis mellifera. Naturwissenschaften, 91(5), 228–231. DOI: 10.1007/s00114-004-0530-z

Giurfa, M. 2007. Behavioral and neural analysis of associative learning in the honeybee: a taste from the magic well. Journal of Comparative Physiology A, 193(8), 801–24. DOI: 10.1007/s00359-007-0235-9

Giurfa, M., Zhang, S., Jenett, A., Menzel, R., & Srinivasan, M. V. 2001. The concepts of “sameness” and “difference” in an insect. Nature, 410(6831), 930–933. DOI: 10.1038/35073582

Guerrieri, F., Lachnit, H., Gerber, B., & Giurfa, M. 2005. Olfactory blocking and odorant similarity in the honeybee. Learning and Memory, 12(2), 86–95. DOI: 10.1101/lm.79305

Gumbert, A. 2000. Color choices by bumble bees (Bombus terrestris): innate preferences and generalization after learning. Behavioral Ecology and Sociobiology, 48(1), 36–43. DOI: 10.1007/s002650000213

Heinrich, B. 1975. Bee flowers: a hypothesis on flower variety and blooming times. Evolution, 29(2), 325–334. DOI: 10.2307/2407220

Henske, J., Krausa, K., Hager, F. A., Nkoba, K., & Kirchner, W. H. 2015. Olfactory associative learning in two African stingless bee species (Meliponula ferruginea and M. bocandei, Meliponini). Insectes Sociaux, 62(4), 507–516. DOI: 10.1007/s00040-015-0430-6

Hrncir, M., Jarau, S., Zucchi, R., & Barth, F. G. 2004. Thorax vibrations of a stingless bee (Melipona seminigra). II. Dependence on sugar concentration. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 190(7), 549–560. DOI: 10.1007/s00359-004-0515-6

Kemp, D. J., Herberstein, M. E., Fleishman, L. J., Endler, J. A., Bennett, A. T. D., Dyer, A. G., Hart, N. S., Marshall, J., & Whiting, M. J. 2015. An integrative framework for the appraisal of coloration in nature. The American Naturalist, 185(6), 705–724. DOI: 10.1086/681021

Koethe, S., Bossems, J., Dyer, A. G., & Lunau, K. 2016. Colour is more than hue: preferences for compiled colour traits in the stingless bees Melipona mondury and M. quadrifasciata. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 202(9-10), 615–627. DOI: 10.1007/s00359-016-1115-y

Land, M. F., & Nilsson, D. E. 2002. Animal eyes. London: Oxford University Press: p. 221.

Lehrer, M., Horridge, G. A., Zhang, S. W., & Gadagkar, R. 1995. Shape vision in bees: innate preference for flower-like patterns. Philosophical Transactions of the Royal Society B: Biological Sciences, 347(1320), 123–137. DOI: 10.1098/rstb.1995.0017

Locatelli, F. F., Fernandez, P. C., & Smith, B. H. 2016. Learning about natural variation of odor mixtures enhances categorization in early olfactory processing. Journal of Experimental Biology, 219(17), 2752–2762. DOI: 10.1242/jeb.141465

Lunau, K., Fieselmann, G., Heuschen, B., & Loo, A. 2006. Visual targeting of components of floral colour patterns in flower-naïve bumblebees (Bombus terrestris; Apidae). Naturwissenschaften, 93(7), 325–8. DOI: 10.1007/s00114-006-0105-2

Maisonnasse, A., Lenoir, J. C., Beslay, D., Crauser, D., & Conte, Y. 2010. E-β-ocimene, a volatile brood pheromone involved in social regulation in the honey bee colony (Apis mellifera). PLoS ONE, 5(10), e13531. DOI: 10.1371/journal.pone.0013531

Matsumoto, Y., Menzel, R., Sandoz, J. C., & Giurfa, M. 2012. Revisiting olfactory classical conditioning of the proboscis extension response in honey bees: a step toward standardized procedures. Journal of Neuroscience Methods, 211(1), 159–167. DOI: 10.1016/j.jneumeth.2012.08.018

Melo, L. R. F., Guimarães, B. M. C., Barônio, G. J., Oliveira, L. C., Cardoso, R. K. O. A., Araújo, T. N., & Telles, F. J. 2018. Como as abelhas percebem as flores e por que isto é importante? Oecologia Australis, 22(4), 362–389. DOI: 10.4257/oeco.2018.2204.03

Menzel, R., Manz, G., Menzel, R., & Greggers, U. 2001. Massed and spaced learning in honeybees: the role of CS, US, the intertrial interval, and the test interval. Learning and Memory, 8(4), 198–208. DOI: 10.1101/lm.40001

Muth, F., Cooper, T. R., Bonilla, R. F., & Leonard, A. S. 2018. A novel protocol for studying bee cognition in the wild. Methods in Ecology and Evolution, 9(1), 78–87. DOI: 10.1111/2041-210X.12852

Nicholls, E., & Ibarra, N. H. 2016. Assessment of pollen rewards by foraging bees. Functional Ecology, 31(1), 76–87. DOI: 10.1111/1365-2435.12778

Ollerton, J., Winfree, R., & Tarrant, S. 2011. How many flowering plants are pollinated by animals? Oikos, 120(3), 321–326. DOI: 10.1111/j.1600-0706.2010.18644.x

Pavlov, I. P. 1927. Conditioned reflexes. London: Oxford University Press: p. 448.

Raguso, R. A. 2008. Wake up and smell the roses: the ecology and evolution of floral scent. Annual Review of Ecology, Evolution and Systematics, 39(1), 549–569. DOI: 10.1146/annurev.ecolsys.38.091206.095601

Rath, L., Galizia, G. C., & Szyszka, P. 2011. Multiple memory traces after associative learning in the honey bee antennal lobe. European Journal of Neuroscience, 34(2), 352–360. DOI: 10.1111/j.1460-9568.2011.07753.x

Rech, A. R., Agostini, K., Oliveira, P. E., & Machado, I. C. 2014a. Biologia da polinização. Rio de Janeiro: Projeto Cultural: p. 527.

Rech, A. R., Bergamo, P. J., & Figueiredo, R. A. 2014b. Polinização abiótica. In: A. R. Rech, K. Agostini, P. E. Oliveira, & I. C. Machado (Eds.), Biologia da polinização. pp. 103–204. Rio de Janeiro: Projeto Cultural.

Rech, A. R., Dalsgaard, B., Sandel, B., Sonne, J., Svenning, J. C., Holmes, N., & Ollerton, J. 2016. The macroecology of animal versus wind pollination: ecological factors are more important than historical climate stability. Plant Ecology and Diversity, 9(3), 253–262. DOI: 10.1080/17550874.2016.1207722

Rodríguez, I., Gumbert, A., Ibarra, N. H., Kunze, J., & Giurfa, M. 2004. Symmetry is in the eye of the beeholder: innate preference for bilateral symmetry in flower-naïve bumblebees. Naturwissenschaften, 91(8), 374–7. DOI: 10.1007/s00114-004-0537-5

Roselino, A. C., Rodrigues, A. V., & Hrncir, M. 2016. Stingless bees (Melipona scutellaris) learn to associate footprint cues at food sources with a specific reward context. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 202(9-10), 657–666. DOI: 10.1007/s00359-016-1104-1

Salzmann, C. C., Nardella, A. M., Cozzolino, S., & Schiestl, F. P. 2007. Variability in floral scent in rewarding and deceptive orchids: the signature of pollinator-imposed selection? Annals of Botany, 100(4), 757–765. DOI: 10.1093/aob/mcm161

Sanchez, M. G. B. , Serre, M., Avargues-Weber, A., Dyer, A. G., & Giurfa, M. 2015. Learning context modulates aversive taste strength in honey bees. Journal of Experimental Biology, 218(6), 949–959. DOI: 10.1242/jeb.117333

Skinner, B. F. 1938. The behavior of organisms. New York: Appleton.

Sletvold, N., Trunschke, J., Smit, M., Verbeek, J., & Ågren, J. 2016. Strong pollinator-mediated selection for increased flower brightness and contrast in a deceptive orchid. Evolution, 70(3), 716–724. DOI: 10.1111/evo.12881

Stach, S., & Giurfa, M. 2005. The influence of training length on generalization of visual feature assemblies in honeybees. Behavioural Brain Research, 161(1), 8–17. DOI: 10.1016/j.bbr.2005.02.008

Stavenga, D. G. 1992. Eye regionalization and spectral tuning of retinal pigments in insects. Trends in Neurosciences, 15(6), 213–8. DOI: 10.1016/0166-2236(92)90038-A

Szyszka, P., Gerkin, R. C., Galizia, C. G., & Smith, B. H. 2014. High-speed odor transduction and pulse tracking by insect olfactory receptor neurons. Proceedings of the National Academy of Sciences, 111(47), 16925–16930. DOI: 10.1073/pnas.1412051111

Takeda, K. 1961. Classical conditioned response in the honey bee. Journal of Insect Physiology, 6(3), 168–179. DOI: 10.1016/0022-1910(61)90060-9

Telles, F. J., Corcobado, G., Trillo, A., & Rodríguez-Gironés, M. A. 2017. Multimodal cues provide redundant information for bumblebees when the stimulus is visually salient, but facilitate red target detection in a naturalistic background. PLoS ONE, 12(9), e0184760. DOI: 10.1371/journal.pone.0184760

Telles, F. J., & Rodríguez-Gironés, M. A. 2015. Insect vision models under scrutiny: what bumblebees (Bombus terrestris terrestris L.) can still tell us. The Science of Nature, 102(1-2), 1256. DOI: 10.1007/s00114-014-1256-1

Turner, C. H. 1910. Experiments on color-vision of the honey bee. The Biological Bulletin, 19(5), 257-279.

Vieira, A. R., Salles, N., Borges, M., & Mota, T. 2018. Visual discrimination transfer and modulation by biogenic amines in honeybees. Journal of Experimental Biology, 221(9), jeb178830. DOI: 10.1242/jeb.178830

Weiss, M. R. 1991. Floral colour changes as cues for pollinators. Nature, 354(6350), 227–229. DOI: 10.1038/354227a0

Weiss, M. R. 2001. Vision and learning in some neglected pollinators: beetles, flies, moths, and butterflies. In: L. Chittka & J. D. Thomson (Eds.), Cognitive ecology of pollination: animal behavior and floral evolution. pp. 171-190. New York: Cambridge University Press.

Weiss, M. R., & Lamont, B. B. 1997. Floral color change and insect pollination: a dynamic relationship. Israel Journal of Plant Sciences, 45(2-3), 185–199. DOI: 10.1080/07929978.1997.10676683

Wester, P., & Lunau, K. 2017. Plant–pollinator communication. Advances in Botanical Research, 82(1), 225–257. DOI: 10.1016/bs.abr.2016.10.004

Willmer, P. 2011. Pollination and floral ecology. Princeton: Princeton University Press: p. 792.

Published

2020-03-16