DOES THE SIZE OF THE TREES DETERMINE THE RICHNESS AND DISTRIBUTION OF VASCULAR EPIPHYTES IN AMAZONIAN FLOODPLAIN FORESTS?
DOI:
https://doi.org/10.4257/oeco.2020.2402.08Keywords:
wetlands, várzea forest, igapó forest, turnover, nestednessAbstract
Vascular epiphytes (VE) are among the most threatened group of plants due to the extraction of trees (phorophytes). Yet, surveys and ecological information on vascular epiphytes are rather scarce particularly in wetlands. To understand the effect of tree assemblage on the occurrence of VE and in order to elucidate ecological patterns of distribution and composition, 16 (25 x 25 m) permanent plots were sampled in an oligotrophic floodplain forest (igapó - PELD MAUA) and compared to the same amount and size of plots in a nutrient-rich floodplain (várzea - RDS Mamirauá), both in Central Amazon. All trees and associated VE were counted and identified. The diversity in várzea is driven by the turnover of epiphytes in trees with different diameters, while in igapó there is a pronounced concentration of VE in trees with smaller diameters. Conservation actions in várzea forests should prioritize the maintenance of forest structure, sustaining taxonomic diversity in all diameter classes of trees. In igapó forests efforts to conserve epiphytes must first consider the taxonomic identity and, after, size of trees in the community. The comparison of our results with those of other PELDs in wetlands and other ecosystems will enhance our knowledge on the biogeographic patters and constrains on the distribution of this important botanical component.
References
Almeida, D.R.A., Nelson, B.W., Schietti, J., Gorgens, E.B., Resende, A.F., Stark, S.C., et al. 2016. Contrasting fire damage and fire susceptibility between seasonally flooded forest and upland forest in the Central Amazon using portable profiling LiDAR. Remote Sensing of Environment. 184, 153–160
Andrade, J. L., & Nobel, P.S. 1997. Microhabitats and water relations of epiphytic cacti and ferns in lowland neotropical forest. Biotropica. 29, 261–270. doi: 10.1111/j.1744-7429.1997.tb00427.x
Ayres, J.M. 1993. As matas de várzea do Mamirauá, médio rio Solimões. CNPq - Programa Trópico Úmido e Sociedade Civil Mamirauá, Brasília, DF. p. 123.
APG III ‒ Angiosperm Phylogeny Group. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society, 161, 105–121. doi: 10.1111/j.1095-8339.2009.00996.x
Barthlott, W., Schmit-Neuerburg, V., Nieder, J. & Engwald, S. 2001. Diversity and abundance of vascular epiphytes: a comparison of secondary vegetation and primary montane rain forest in the Venezuelan Andes. Plant Ecology, 152, 145–156. doi:10.1023/A:1011483901452
Baselga, A. 2008. Determinants of species richness, endemism and turnover in European longhorn beetles. Ecography, 31, 263–271.
Baselga, A. 2010. Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 19, 134–143.
Baselga, A. 2012. Separating the contribution of species replacement and species richness differences to beta diversity. Global Ecology and Biogeography. 21, In press.
Baselga, A., & Orme, C. D. L. 2012. Betapart: an R package for the study of beta diversity. Methods in Ecology and Evolution, 3, 808–812.
Benzing, D.H. 1990. Vascular epiphytes. Cambridge University Press, New York, 372p.
Burns, K.C., 2007. Network properties of an epiphyte metacommunity. Journal of Ecology. 95, 1365–2745. doi: 10.1111/j.1365-2745.2007.01267.x
Burns, K.C., & Zotz, G. 2010. A hierarchical framework for investigating epiphyte assemblages: networks, meta-communities, and scale. Ecology, 91, 377–385. doi: 10.1890/08-2004.1
Callaway, R.M., Reinhart, K.O., Moore, G.W., Moore, D.J., & Pennings, S.C. 2002. Epiphyte host preferences and host traits: mechanisms for species-specific interactions. Oecologia, 132, 221–230. doi:10.1007/s00442-002-0943-3
Condit, R., Hubbell, S.P., & Foster, R.B. 2013. Mortality rates of 205 neotropical tree and shrub species and the impact of a severe drought. Ecological Monographs, 65, 419–439.
Esquivel‐Muelbert, A., Baker, T.R., Dexter, K.G., Lewis, S.L. ter Steege, H., Lopez‐Gonzalez, G. et al. 2016. Seasonal drought limits tree species across the Neotropics. Ecography, 40, 618–629
Engelbrecht, B.M., Comita, L.S., Condit, R., Kursar, T.A., Tyree, M.T., Turner, B. L., & Hubbell, S.P. 2007. Drought sensitivity shapes species distribution patterns in tropical forests. Nature, 447, 80–82. https://doi.org/10.1038/nature05747
Ferreira, L.V. 1997. Effects of the duration of flooding on species richness and floristic composition in three hectares in the Jaú National Park in floodplain forests in central Amazonia. Biodiversity and Conservation, 6, 1353–1363. doi:10.1023/A:1018385529531
Ferreira, L.V., 2000. Effects of flooding duration on species richness, floristic composition and forest structure in river margin habitat in Amazonian blackwater floodplain forests: implications for future design of protected areas. Biodiversity and Conservation. 9, 1–14. doi:10.1023/A:1008989811637
Flores-Palacios, A, & García-Franco, G. 2006. The relationship between tree size and epiphyte species richness: testing four different hypotheses. Journal of Biogeography, 33, 323–330. doi:10.1111/j.1365-2699. 2005.01382.x
Gentry, A., & Dodson, C.H. 1987. Diversity and biogeography of neotropical vascular epiphytes. Ann. Mo. Bot. Gard, 74, 205–233. doi: 10.2307/2399395
Hietz, P. & Hietz-Seifert, U. 1995. Intra and interspecific relations within an epiphyte community in a Mexican humid montane forest. Selbyana, 16, 135–140.
Johansson, D.R. 1974. Ecology of vascular epiphytes in West African rain forest, Acta Phytogeography Suecica. 59. p. 136.
Junk, W.J., Bayley, P.B., & Sparks, R.E., 1989. The flood pulse concept in river-floodplain systems. Canadian Journal of Fisheries and Aquatic Sciences, 106, 110–127.
Junk, W.J., Piedade, M.T.F., Schöngart, J., Cohn-Haft, M., Adeney, M.J., & Wittmann, F. 2011. A classification of major naturally-occurring Amazonian lowland wetlands. Wetlands, 31, 623–640. doi:10.1007/s13157-011-0190-7
Junk, W.F., Piedade, M.T.F., Scöngart, J., & Wittmann, F. 2012. A classification of major natural habitats of Amazonian white-water river floodplains (várzeas). Wetlands Ecology and Management, 20, 461–475.
Junk, W.J., Wittmann, F., Schongart, J., & Piedade, M.T.F. 2015. A classification of the major habitats of Amazonian black-water river floodplains and a comparison with their white-water counterparts. Wetlands Ecology and Management, 23, 677–693. doi:10.1007/s11273-015-9412-8
Kersten, R.A., Borgo, M., & Silva, M.S. 2009. Diversity and distribution of vascular epiphytes in an insular Brazilian coastal forest. Revista de Biologia tropical, 57, 749–759.
Kersten, R., & Waechter, J.L. 2011. Métodos quantitativos no estudo de comunidades epifíticas. In: Felfili-Fagg JM, Eisenlohr PV, Melo MMRF, Andrade LA, Meira Neto JAA. (Eds.). pp. 231–253. Fitossociologia no Brasil: Métodos e estudos de caso. Viçosa - MG.
Koleff, P., Gaston, K.J., & Lennon, J.J. 2003. Measuring beta diversity for presence-absence data. Journal of Animal Ecology. 72, 367–382. doi.org/10.1046/j.1365-2656.2003.00710.x
Köster, N., Friedrich, K., Nieder, J., & Barthlott, W. 2009. Conservation of Epiphyte Diversity in an Andean Landscape Transformed by Human Land Use. Conservation Biology. 23, 911–919. doi: 10.1111/j.1523-1739.2008.01164.x
Küper, W., Kreft, H., Köster, N., Nieder, J. & Barthlott W. 2004. Large-scale diversity patterns of vascular epiphytes in Neotropical montane rain forests. Journal of Biogeography. 31, 1477–1487. doi: 10.1111/j.1365-2699.2004.01093.x
Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. Disponível em: <http://floradobrasil.jbrj.gov.br/>. Acesso em: 20 Mar. 2015.
Melack, J.M., & Hess, L.L. 2010. Remote Sensing of the Distribution and Extent of Wetlands in the Amazon Basin. In: Junk, W.J., Piedade, M.T.F., Wittmann, F., Schöngart, J., Parolin, P. (Eds.). Amazonian Floodplain Forests: Ecophysiology, Biodiversity and Sustainable Management Ecological Studies. pp. 44–58. Springer Science & Business Media.
Mondragón, D., Valverde, T., & Hernandez-Apolimar, M. 2015. Population ecology of epiphytic angiosperms: A review. Tropical Ecology, 56, 01–39. doi: 10.13140/2.1.4043.5849
Montero, C.J., Piedade, M.T.P., & Wittmann, F. 2014. Floristic variation across 600 km of inundation forest (Igapó) along the Negro River, Central Amazonia. Hydrobiologia. 729, 229–246. doi:10.1007/s10750-012-1381-9
Muelbert, A.E., et al. 2016. Seasonal drought limits tree species across the Neotropics. Ecography, 39, 1–12. doi: 10.1111/ecog.01904
Nieder, J., Engwald, S., Klawun, M., & Barthlott, W. 2000. Spatial Distribution of Vascular Epiphytes (including Hemiepiphytes) in a Lowland Amazonian Rain Forest (Surumoni Crane Plot) of Southern Venezuela. Biotropica, 32, 385–396. 10.1111/j.1744-7429.2000.tb00485.x
Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O'Hara, R.B., Simpson, G.V., Solymos, P., Henry, M., Stevens, H., & Wagner, H. 2016.vegan: Community Ecology Package. R package version 2.3-3. http://CRAN.R-project.org/package=vegan
Pezzini, F.F., et al. 2012. The Brazilian Program for Biodiversity Research (PPBio) Information System. In: Dengler, J., Oldeland, J., Jansen, F., Chytrý, M., Ewald, J., Finckh, M., Glöckler, F., Lopez-Gonzalez, G., Peet, R.K., Schaminée, J.H.J. (Eds.). Vegetation databases for the 21st century. Biodiversity & Ecology, 4, 265–274. doi: 10.7809/b-e.00083.
Pitman, N.C.A., Terborgh, J.W., Silman, M.R., Percy Núñez V., Neill, D.A., Cerón, C.E., & Palacios, W.A., Aulestia, M. 2002. A comparison of tree species diversity in two upper Amazonian forests. Ecology, 83, 3210–3224.
Prance, G.T. 1979. Notes on the vegetation of Amazonia 3. The terminology of Amazonian forest types subject to inundation. Brittonia, 31, 26–38.
Pouig, H., 2008. A floresta tropical úmida. São Paulo: Editora UNESP: 496 p.
Qian, H., Ricklefs, R.E., & White, P.S. 2005. Beta diversity of angiosperms in temperate floras of eastern Asia and eastern North America. Ecology Letters, 8, 15–22. doi: 10.1111/j.1461-0248.2004.00682.x
Quaresma, A.C., Piedade, M.T.F., Feitosa, Y.O., Wittmann, F., ter Steege, H. 2017. Composition, diversity and structure of vascular epiphytes in two contrasting Central Amazonian floodplain ecosystems. Acta Botânica Brasilica. 31, 686–697.
Quaresma, A.C., Piedade, M.T.F., Wittmann, F., ter Steege, H., 2018. Species richness, composition, and spatial distribution of vascular epiphytes in Amazonian black water floodplain forests. Biodiversity and Conservation, 27(8), 1981–2002 https://doi.org/10.1007/s10531-018-1520-3.
R Development Core Team, 2011. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.
Resende, A.F., Nelson, B.W., Flores, B.M., & Almeida, D.R.A. 2014. Fire damage in seasonally flooded and upland forests of the Central Amazon. Biotropica. 46, 643–646. doi: 10.1111/btp.12153
Sanford, W.W. 1968. Distribution of epiphytic orchids in semi-deciduous tropical forest in southern Nigeria. Journal of Ecology, 56, 697–705.
Simpson, G.G. 1943. Mammals and the nature of continents. American Journal of Science, 241, 1–31.
Schöngart, J., Piedade, M.T.F., Wittmann, F., Junk, W.J., & Worbes, M., 2005.Wood growth patterns of Macrolobium acaciifolium (Benth.) Benth. (Fabaceae) in Amazonian black-water and white water floodplain forests. Oecologia. 145, 454–461. doi: 10.1007/s00442-005-0147-8
Schöngart, J. 2008. Growth-Oriented Logging (GOL): A new concept towards sustainable forest management in Central Amazonian várzea floodplains. Forest Ecology Management, 256, 46–58
Schöngart, J., Wittmann, F., & Worbes, M. 2010. Biomass and net primary production of Central Amazonian floodplain forests. In: Junk, W.J., Piedade, M.T.F., Wittmann, F., Schöngart, J., Parolin, P. (Eds.). Amazonian Floodplain Forests: Ecophysiology, Biodiversity and Sustainable Management, Ecological, pp. 347–388. Springer Science & Business Media.
Schimper, A.F.W. 1888. Die epiphytische vegetation amerikas. Jena: Gustav ficher. p. 162.
ter Steege H, Pitman NC, Phillips OL, Chave J, Sabatier D, Duque A, Molino JF, Prévost MF, Spichiger R, Castellanos H, von Hildebrand P, Vásquez R. 2006. Continental-scale patterns of canopy tree composition and function across Amazonia. Nature, 443, 444–447. doi: 10.1038/nature05134
Tuomisto, H., Ruokolainen, K., & Yli-Halla, M. 2003. Dispersal, environment, and floristic variation of western Amazonian forests. Science, 299, 241–244.
Ulrich, W., & Gotelli, N.J., 2007. Null model analysis of species nestedness patterns. Ecology, 88, 1824–1831.
Wagner, K., Mendieta-Leiva, G., & Zotz, G. 2015. Host specificity in vascular epiphytes: A review of methodology, empirical evidence and potential mechanisms. AoB Plants7: doi: 10.1093/aobpla/plu092
Wang, X., Long W., Schamp, B.S., et al. 2016. Vascular epiphyte diversity differs with host crown zone and diameter, but not orientation in a tropical Cloud Forest. PLoS ONE 11(7). e0158548.
Wittmann, F., Anhuf, D., Junk, & W.J. 2002. Tree species distribution and community structure of Central Amazonian várzea forests by remote sensing techniques. Journal of Tropical Ecology, 18, 805–820. doi:10.1017/S0266467402002523
Wittmann, F., Schöngart, J., Montero, J.C., Motzer, T., Junk, W.J., Piedade, M.T.F., Queiroz, H. L., Worbes, M. 2006. Tree species composition and diversity gradients in white-water forests across the Amazon Basin. Journal of Biogeography, 33, 1334–1347.
Wittmann, F., Schöngart, J., & Junk, W.J. 2010. Phytogeography, species diversity, community structure and dynamics of Amazonian floodplain forests. In: Junk, W.J., Piedade, M.T.F., Wittmann, F., Schöngart, J., & Parolin, P. (Eds.). Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Ecological Studies, pp. 61-102. Springer Science & Business Media.
Wittmann, F., Householder, E., Piedade, M.T.F, Assis, R.L., Schöngart, J., Parolin, P., & Junk, W.J. 2012. Habitat specifity, endemism and the neotropical distribution of Amazonian white-water floodplain trees. Ecography. 36, 690–707. doi: 10.1111/j.1600-0587.2012.07723.x
Wittmann, F., & Junk, W.J. 2016. The Amazon River Basin. In: Finlayson, C. M., Everard, M., Irvine, K., McInnes, R. J., Middleton, B. A., van Dam, A. A., Davidson, N. C. (Eds.). The Wetland Book. pp.1–20. Springer.
Wolf, J.H.D., Gradstein, S.R., & Nadkarni, N.M. 2009. A protocol for sampling of vascular epiphyte richness and abundance. Journal of Tropical Ecology, 25, 107–121. doi:10.1017/S0266467408005786
Zotz, G. 2013. The systematic distribution of vascular epiphytes - a critical update. Botanical Journal of Linnean Society, 171, 453–481. doi: 10.1111/boj.12010
Zotz, G., & Vollrath, B. 2003. The epiphyte vegetation of the palm, Socratea exorrhiza - correlations with tree size, tree age, and bryophyte cover. Journal of Tropical Ecology, 19, 81–90. doi: 10.1017/S0266467403003092