ECOLOGIA COMPORTAMENTAL EVOLUTIVA APLICADA A PEIXES DE RIACHO
DOI:
https://doi.org/10.4257/oeco.2021.2502.09Keywords:
adaptation, evolution, life history trade off, natural selection, sexual selectionAbstract
Observações diretas em campo constituem uma importante fonte de informações sobre a história natural e o comportamento de peixes de riacho. Contudo, tais observações diretas podem ser insuficientes para permitir conclusões robustas sobre as causas dos fenômenos biológicos envolvidos, já que dados observacionais frequentemente falham em demonstrar de forma contundente relações de causa e efeito. Neste estudo nós trazemos conceitos necessários para a formulação de hipóteses a partir de uma versão derivada da História Natural e da Etologia, a Ecologia Comportamental Evolutiva. Essa
perspectiva permite análises do contexto evolutivo e do valor adaptativo dos padrões comportamentais observados, e serve de base para novas hipóteses que podem ser aplicadas a muitos grupos de organismos. Observações e experimentos envolvendo peixes de riacho originaram e deram subsídio a muitas teorias sobre a evolução de comportamentos e de características morfológicas peculiares que são amplamente debatidas pela comunidade científica. Após apresentar os conceitos chaves, nós trazemos alguns exemplos de programas de pesquisas com peixes que culminaram na formulação de importantes teorias, onde cientistas aproveitaram as oportunidades que os peixes de riacho oferecem e conduziram
observações, amostragens e experimentos controlados em campo e laboratório. Descrevemos nosso programa de pesquisas, que tem uma espécie amazônica de peixe de riacho (Crenuchus spilurus) como organismo modelo. Ao final, advogamos pela pluralidade de métodos e análises no estudo da Ecologia Comportamental Evolutiva de peixes de riacho.
stream fish. Unfortunately, information gathered from direct field observations are often limited and thus may fail to provide robust testing for the causation of biological phenomena. Here, we bring concepts that form the theoretical foundation necessary for raising hypotheses in Evolutionary Behavioral Ecology,
a study area directly derived from natural history and ethology that directly incorporates evolutionary processes and the adaptative value of behavioral patterns observed. This perspective allows the analysis
of the evolutionary context and the adaptive value of observed behavioral patterns, and serves as the basis for new hypotheses that can be applied to many groups of organisms. Using this framework, field observations and experiments encompassing freshwater stream fish have subsidized many theories on the evolution of behavioral and morphological traits that are widespread debated by scientific community. After presenting the main key concepts, we bring some examples of research programs with freshwater fish that culminated in the formulation of important theories and where scientists took advantage of the opportunities provided by stream fish to conduct observations, samplings and controlled experiments both in the field and in captivity. We also describe our own research program, which uses an Amazonian freshwater stream fish (Crenuchus spilurus) as a model organism. By doing so, we advocate for the use of several methods and analyses for the study of Evolutionary Behavioral Ecology of freshwater stream fish.
References
Basolo, A. L. 1990. Female preference predates the evolution of the sword in swordtail fish. Science, 250(4982), 808–810. DOI: 10.1126/science.250.4982.808
Basolo, A. L. 1995. Phylogenetic evidence for the role of a pre-existing bias in sexual selection. Proceedings of the Royal Society of London, Series B, 259(1356), 307–311. DOI: 10.1098/rspb.1995.0045
Borghezan, E. D. A., Pinto, K. D. S., Zuanon, J., & Pires, T. H. S. 2019. Someone like me: Size-assortative pairing and mating in an Amazonian fish, sailfin tetra Crenuchus spilurus. PloS one, 14(9), e0222880. DOI: 10.1371/journal.pone.0222880
Coyne, J. A., & Orr, H. A. 2004. Speciation. Sunderland: Sinauer Associates: p. 545.
Darwin, C. 1859. On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. London: John Murray: p. 502.
Lorenz, K. 2002. King Solomon's ring. Routledge classics: p. 224
Darwin, C. 1871. The decent of man and selection in relation to sex. London: John Murray.
Endler, J. A. 1980. Natural selection on colour patterns in Poecilia reticulata. Evolution, 34(1), 76–91. DOI: 10.2307/2408316
Endler, J. A. 1991. Variation in the appearance of guppy color patterns to guppies and their predators under different visual conditions. Vision research, 31(3), 587-608. DOI: 10.1016/0042-6989(91)90109-I
Fisher, R. A. 1930. The genetical theory of natural selection. Oxford: Clarendon Press.
Fricke, R., Eschmeyer, W., & Van Der Laan, R. 2020. Eschmeyer’s Catalog of Fishes: http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp. (accessed April 29, 2020).
Fox, C. W. & Westneat, D. F. 2010. Adaptation. In: D. F. Westneat & C. W. Fox (Eds.), Evolutionary Behavioral Ecology. pp. 16–31. New York: Oxford University Press.
Pires, T. H. S., Farago, T. B., Campos, D. F., Cardoso, G. M., & Zuanon, J. 2016. Traits of a lineage with extraordinary geographical range: ecology, behavior and life-history of the sailfin tetra Crenuchus spilurus. Environmental Biology of Fishes, 99(12), 925-937. DOI: 10.1007/s10641-016-0534-5
Rosenthal, G. G., & Evans, C. S. 1998. Female preference for swords in Xiphophorus helleri reflects a bias for large apparent size. PNAS, 95(8), 4431-4436. DOI: 10.1073/pnas.95.8.4431
Sinervo, B. & Basolo, A. L. 1996. Testing adaptation using phenotypic manipulations. In: Rose, M. R. & Lauder, G. V. (Eds), Adaptation. pp. 149–185. New York: Academic Press.
Stearns, S. C. 1992. The evolution of life histories. Oxford: Oxford University Press. p. 249
Stefanelli-Silva, G., Zuanon, J., & Pires, T. H. S. 2019. Revisiting Amazonian water types: Experimental evidence highlights the importance of forest stream hydrochemistry in shaping adaptation in a fish species. Hydrobiologia, 830(1), 151-160. DOI: 10.1007/s10750-018-3860-0
Reeve, H. K. & Sherman, P. W. 1993. Adaptation and the goals of evolutionary research. The Quarterly Review of Biology. 68(1), 1–32. DOI: 10.1086/417909
Ricklefs, R. A. 2016. A Economia da Natureza. (7a Ed.). Rio de Janeiro: Guanabara Koogan.
Reznick, D., & Endler, J. A. .1982. The impact of predation on life history evolution in Trinidadian guppies (Poecilia reticulata). Evolution 36(1), 160-177. DOI: 10.2307/2408156
Reznick, D. A., Bryga, H., & Endler, J. A. 1990. Experimentally induced life-history evolution in a natural population. Nature, 346(6282), 357-359. DOI: 10.1038/346357a0
Rosenthal, G. G. 2017. Mate choice: the evolution of sexual decision making from microbes to humans. Princeton: Princeton University Press. p. 632.
Rosenthal, G. G., & Evans, C. S. 1998. Female preference for swords in Xiphophorus helleri reflects a bias for large apparent size. PNAS, 95(8), 4431-4436.
Taborsky, M. 2008. Alternative reproductive tactics in fish. In: Oliveira, R. F., Taborsky, M. & Brockmann, H. J. (Eds) Alternative Reproductive Tactics. pp. 251–299. Cambridge: Cambridge University Press.
Ter Steege, H., Pitman, N. C., Sabatier, D., Baraloto, C., Salomao, R. P., Guevara, J. E., … & Silman, M. R. 2013. Hyperdominance in the Amazonian tree flora. Science, 342(6156). DOI: 10.1126/science.1243092