ECOLOGIA DO MOVIMENTO EM PEIXES DE RIACHO

Authors

  • Rosana Mazzoni Laboratório de Ecologia de Peixes, Departamento de Ecologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ); mazzoni@uerj.br; https://orcid.org/0000-0001-8780-7779 https://orcid.org/0000-0001-8780-7779
  • Thiago Fonseca de Barros Laboratório de Ecologia de Peixes, Departamento de Ecologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ); tod_barros@yahoo.com.br; https://orcid.org/0000-0001-9834-4503 https://orcid.org/0000-0001-9834-4503

DOI:

https://doi.org/10.4257/oeco.2021.2502.10

Keywords:

Marcação e recaptura, Paradigma do movimento restrito, Migração

Abstract

Movimento é um fator chave da dinâmica espacial e do tamanho das populações de peixes. É um dos principais mecanismos para manter populações viáveis e também responde pela dispersão, colonização e execução de etapas da vida dos indivíduos. O paradigma do movimento restrito, atualmente refutado, previa que peixes de água doce não se movimentam. Entretanto estudos mostram que, além de se movimentar em curta e larga escala, os padrões de movimento desses peixes têm, em geral, motivação reprodutiva, alimentar, busca por abrigo, colonização ou exploração. Os estudos sobre movimento de peixes Neotropicais estão concentrados nos grandes migradores de grandes bacias, como Amazonas e Paraná. Para riachos, onde predominam espécies de pequeno porte, pouco ainda se sabe sobre o movimento e suas motivações. Nesta revisão mostramos que são ainda bastante escassos os estudos sobre o movimento de peixes em riachos neotropicais. Propomos um protocolo para obtenção de dados e ferramentas analíticas para determinação do movimento dos peixes em riachos. Destacamos três ferramentas para essas análises: (i) análise da estrutura espaço-temporal do tamanho dos indivíduos, (ii) experimentos de marcação-recaptura e (iii) análises moleculares. Concluímos que, dadas as limitações de cada análise, a utilização das três ferramentas deveria ser realizada de forma conjunta.


TITLE: ECOLOGY OF MOVEMENT IN STREAM-DWELLING FISH

ABSTRACT

Movement is a key factor in spatial dynamics and the size of fish populations. It is one of the main mechanisms for maintaining viable populations and also accounts for the dispersion, colonization and performance of individuals life stages. The currently refuted restricted movement paradigm predicted that freshwater fish would not move. However, studies show that in addition to moving on a short and large scale, the movement patterns of these fish have, in general, reproductive, food, search for shelter, colonization or exploitation motivation. Studies on the movement of Neotropical fish are concentrated on the large migrators from large basins, such as Amazonas and Paraná. For streams, where small species predominate, little is known about the movement and its motivations. In this review, we show that studies on the movement of fish in neotropical streams are still very scarce. We propose a protocol for obtaining data and analytical tools for determining fish movement in streams. We highlight three tools for that: (i) analysis of the spatio-temporal structure of the size of the fish, (ii) mark-recapture experiments and (iii) molecular analyzes. We conclude that, given the limitation of each analysis, the use of the three tools must be carried out jointly.

References

Aarestrup, K., Økland, F., Hansen, M. M., Righton, D., Gargan, P., Castonguay, M., Bernatchez, L., Howey, P., Sparholt, H., Pedersen, M. I., & McKinley, R. S. 2009. Oceanic spawning migration of the European eel (Anguilla anguilla). Science, 325, 1660. DOI: 10.1126/science.1178120.

Agostinho, A. A., Gomes, L. C., Fernandes D. R., & Suzuki H. I. 2002. Efficiency of fish ladders for neotropical ichthyofauna. River Research and Application, 18(3), 299–306.

Agostinho, A. A., Thomaz, S. M., & Gomes, L. C. 2005 Conservation of the Biodiversity of Brazil's Inland Waters. Conservation Biology, 19(3), 646–652. DOI: 10.1111/j.1523-1739.2005.00701.x

Aldvén, D., Degerman, E., & Höjesjö, J. 2015. Environmental cues and downstream migration of anadromous brown trout (Salmo trutta) and Atlantic salmon (Salmo salar) smolts. Boreal Environment Research, 20(1), 35–44.

Allard, L., Grenouillet, G., Khazraie, K., Tudesque, L., Vigouroux, R., & Brosse, S. 2014. Electrofishing efficiency in low conductivity neotropical streams: towards a non-destructive fish sampling method. Fisheries Management and Ecology, 21(3), 234–243. DOI: 10.1111/fme.12071

Araújo-Lima, C. A. R. M., & Oliveira, E. C. 1998 Transport of larval fi sh in the Amazon. Journal of Fish Biology, 53 (Suppl. A), 297–306.

Arrington, D. A., & Winemiller, K. O. 2003. Diel changeover in sandbank fish assemblages in a neotropical floodplain river. Journal of Fish Biology, 63, 1–18.

Barthem, R. B. & Goulding M. 1997. The Catfish Connection: Ecology, Migration, and Conservation of Amazon Predators. Columbia University Press.

Barthem, R. B., Goulding, M., Leite, R. G., Cañas, C., Forsberg, B., Venticinque, E., Petry, P., Ribeiro, M. L. B., Chuctaya, J., & Mercado, A. 2017. Goliath catfish spawning in the far western Amazon confirmed by the distribution of mature adults, drifting larvae and migrating juveniles. Scientific Reports, 7, 41784. DOI: 10.1038/srep41784.

Braga, R. R., Braga, M. R., & Vitule, J. R. S. 2013. Population structure and reproduction of Mimagoniates microlepis with a new hypothesis of ontogenetic migration: implications for stream fish conservation in the Neotropics. Environmental Biology of Fish, 965, 21–31.

Brönmark, C., Hulthén, K., Nilsson, A., Skov, C., Hansson, L.-A., Brodersen, J., & Chapman, B. 2013. There and back again: Migration in freshwater fishes. Canadian Journal of Zoology, 92, 1–13. DOI: 10.1139/cjz-2012-0277.

Brönmark, C., Skov, C., Brodersen, J., Nilsson, P. A., and & Hansson, L.-A. 2008. Seasonal migration determined by a trade-off between predator avoidance and growth. PLoS One, 3, e1957. DOI:10.1371/journal.pone.0001957.

Carlson, B. E., & Langkilde, T. 2013. A common marking technique affects tadpole behavior and risk of predation. Ethology, 119, 167–177. DOI: 10.1111/eth.12050

Castro, R. M. C. 1999. Evolução da ictiofauna de riachos sul-americanos: padrões gerais e possíveis processos causais. In: E. P. Caramaschi, R. Mazzoni & P. R. Peres-Neto (Eds.), Ecologia de Peixes de Riachos. pp. 139–155. Rio de Janeiro: Série Oecologia Brasiliensis, vol. VI PPGE-UFRJ.

Celestino, L. F., Sanz-Ronda, F. J., Kashiwaqui, E. A. L., Celestino, E. F., Makrakis, M. C., & Makrakis, S. 2017. Daily movement behavior of two Neotropical armored catfish species (Ancistrus aff. cirrhosus Valenciennes, 1836 and Hypostomus ancistroides Ihering, 1911) at a road-stream crossing culvert. Journal of Applied Ichthyology, 33(6), 1092–1099. DOI: 10.1111/jai.13446

Chapman, B. B., Brönmark, C., Nilsson, J.-Å., and Hansson, L.-A. 2011. The ecology and evolution of partial migration. Oikos, 120, 1764–1775. DOI:10.1111/j. 1600-0706.2011.20131.x.

Collins, A. L., Hinch, S. G., Welch, D. W., Cooke, S. J., & Clark, T. D. 2013. Intracoelomic acoustic tagging of juvenile sockeye salmon: swimming performance, survival, and postsurgical wound healing in freshwater and during a transition to seawater. Transactions of the American Fisheries Society, 142, 515–523. DOI: 10.1080/00028487.2012.743928

Crossman, E. J. 1977. Displacement, and home range of muskellunge determined by ultrasonic tracking. Environmental Biology of Fishes, 1(2), 145–158. https://doi.org/10.1007/BF00000406

Dala-Corte, R. B., Moschetta, J. B., & Becker, F. G. 2016. Photo-identification as a technique for recognition of individual fish: a test with the freshwater armored catfish Rineloricaria aequalicuspis Reis & Cardoso, 2001 (Siluriformes: Loricariidae). Neotropical Ichthyology, e15(1): e150074. DOI: 10.1590/1982-0224-20150074

Espírito-Santo, H. M. V., Rodríguez, M. A., & Zuanon, J. 2016. Strategies to avoid the trap: stream fish use fine-scale hydrological cues to move between the stream channel and temporary pools. Hydrobiologia, 792, 183–194. DOI: 10.1007/s10750-016-3054-6

Funk, J. L. 1957. Movement of stream fishes in Missouri. Transactions of the American Fisheries Society, 85(1), 39–57. https://doi.org/10.1577/1548-8659(1955)85[39:MOSFIM]2.0.CO;2

Gatz Jr., A. J., & Adams S. M. 1994. Patterns of movement of centrarchids in two warmwater streams in eastern Tennessee. Ecology of Freshwater Fish, 3(1), 35–48. https://doi.org/10.1111/j.1600-0633.1994.tb00105.x

Gauthier-Clerc, M., Gendner, J.-P., Ribic, C. A., Fraser, W. R., Woehler, E. J., Descamps, S., Gilly, C., Le Bohec, C., & Le Maho, Y. 2004. Long-term effects of flipper bands on penguins. Proceedings of the Royal Society of London. Series B, Biological Sciences, 271(suppl. 6), S423–S426. DOI: 10.1098/rsbl.2004.0201

Gerking, S. D. 1953. Evidence for the concepts of home range territoriality in stream fishes. Ecology, 34, 347–365.

Hansson, L.-A., & Hylander, S. 2009. Size-structured risk assessments govern Daphnia migration. Proceedings of the Royal Society of London. Series B, Biological Sciences, 276, 331–336. DOI: 10.1098/rspb.2008.1088

Hendry, A. P., Bohlin, T., Jonsson, B., & Berg, O. 2004. To sea or not to sea: anadromy versus non-anadromy in salmonids. In: A. P. Hendry & S. C. Stearns (Eds.), Evolution illuminated: salmon and their relatives. pp. 92–125. Oxford: Oxford University Press.

Henninger, J., Krahe, R., Sinz, F., & Benda, J. 2020. Tracking activity patterns of a multispecies community of gymnotiform weakly electric fish in their neotropical habitat without tagging. Journal of Experimental Biology, 223, jeb206342. DOI:10.1242/jeb.206342

Hoeinghaus, D. J., Winemiller, K. O., Layman, C. A., Arrington, D. A., & Jepsen, D. B. 2006. Effects of seasonality and migratory prey on body condition of Cichla species in a tropical floodplain river. Ecology of Freshwater Fish, 15, 398–407.

Horton, T. B., & Guy, C. S. 2002. Habitat use and movement of spotted bass in Otter Creek, Kansas. In: D. P. Philipp & M. S. Ridgway (Eds.). Black bass: ecology, conservation, and management. Pp. 161–171. Bethesda(MD): Symposium 31 of the American Fisheries Society.

Horton, T. W., Holdaway, R. N., Zerbini, A. N., Hauser, N., Garrigue, C., Andriolo, A., & Clapham, P. J. 2011. Straight as an arrow: humpback whales swim constant course tracks during long-distance migration. Biology Letters, 7, 674–679. DOI:10.1098/rsbl.2011.0279.

Ivasauskas, T. J., Bettoli, P. W., & Holt, T. 2012. Effects of suture material and ultrasonic transmitter size on survival, growth, wound healing, and tag expulsion in rainbow trout. Transactions of the American Fisheries Society, 141, 100–106. DOI: 10.1080/00028487.2011.651553

Lowe Mcconnel, R. H. 1999. Estudos ecológicos de comunidades de peixes tropicais. São Paulo, Edusp: p. 534.

Lucas, M. C., & Baras, E. 2008. Migration of freshwater fishes. Oxford: Blackwell Science: p. 420.

Lucas, M. C., & Bubb D. H. 2014. Fish in space: local variations of home range and habitat use of a stream-dwelling fish in relation to predator density. Journal of Zoology, 293(2), 126–133. https://doi.org/10.1111/jzo.12129

Makrakis, S., Miranda, L. E., Gomes, L. C., Makrakis, M. C., & Junior, H. M. F. 2011. Ascent of neotropical migratory fish in the Itaipu Reservoir fish pass. River Research Applications, 27, 511–519. DOI:10.1002/rra.1378

Mazzoni, R., & Iglesias-Rios, R. 2012. Movement patterns of stream-dwelling fishes from Mata Atlântica, Southeast Brazil. Revista de Biologia Tropical, 60(4), 1837–1846.

Mazzoni, R., & Lobón-Cerviá, J. 2000. Longitudinal structure, density and production rates of a Neotropical stream fish assemblage: the river Ubatiba in the Serra do Mar (South-East Brazil). Ecography, 23, 588–602.

Mazzoni, R., Fenerich-Verani, N., & Caramashi, E. P. 2000. Electrofishing as a sampling technique for coastal stream fish populations in the Southeast of Brazil. Revista Brasileira de Biologia, 60, 205–216.

Mazzoni, R., Pinto, M. P., Iglesias-Rios, R., & Costa, R. 2018. Fish movement in an Atlantic Forest stream. Neotropical Ichthyology, 16(1), e170065. https://doi.org/10.1590/1982-0224-20170065.

Mazzoni, R., Schubart, S. A., & Iglesias-Rios, R. 2004. Longitudinal segregation of Astyanax janeiroensis in Rio Ubatiba: a Neotropical stream of south-east Brazil. Ecology of Freshwater Fish, 13, 231–234.

McMahon, T. E., & Matter W. J. 2006. Linking habitat selection, emigration and population dynamics of freshwater fishes: a synthesis of ideas and approaches. Ecology of Freshwater Fish, 15, 200–210.

Mehner, T., & Kasprzak, P. 2011. Partial diel vertical migrations in pelagic fish. Journal of Animal Ecology, 80, 761–770. DOI:10.1111/j.1365-2656.2011.01823.x

Menezes, M. S., & Caramaschi, E. P. 2000. Longitudinal distribution of Hypostomus punctatus (Osteichthyes, Loricariidae) in a Coastal Stream from Rio de Janeiro, Southeastern Brazil. Brazilian Archives of Biology and Technology, 43, 229–233.

Mullu, D. 2016. A Review on the Effect of Habitat Fragmentation on Ecosystem. Journal of Natural Sciences Research, 6(15), 1–15.

Myers, G. S. 1938. Freshwater fishes and West Indian zoogeography. Annual Report Smithsonian Institution, 3465, 339–364.

Nathan, R. 2008. An emerging movement ecology paradigm. Proceedings of the National Academy of Sciences USA, 105, 1950–1951. DOI:10.1073/pnas.0808918105

Nathan, R., & Giuggioli, L. 2013. A milestone for movement ecology research. Movement Ecology, 2013, 1–3.

Økland, F., Hay, C. J., Næsje, T. F., Thorstad, E. B. & Nickandor, N. 2001. Movements and habitat utilisation of radio tagged carp (Cyprinus carpio) in a reservoir in the Fish River, Namibia. NINA-NIKU Project Report, 13, 1–28.

Okun, N., & Mehner, T. 2005. Distribution and feeding of juvenile fish on invertebrates in littoral reed (Phragmites) stands. Ecology of Freshwater Fish, 14, 139–149.

Ouedraogo, C., Canonne, M., D’cotta, H., & Baroiller, J.-F. 2014. Minimal body size for tagging fish with electronic microchips as studied in the nile tilapia. North American Journal of Aquaculture, 76, 275–280. DOI: 10.1080/15222055.2014.911228

Pavlov, D. S., Nezdoliy, V. K., Urteaga, A. K., & Sanches, O. R. 1995. Downstream migration of juvenile fishes in the rivers of Amazonian Peru. Journal of Ichthyology, 35, 227–248.

Pelicice F. M., Pompeu P. S., & Agostinho A. A. 2014. Large reservoirs as ecological barriers to downstream movements of Neotropical migratory fish. Fish and Fisheries, 16(4), 697–715. DOI: 10.1111/faf.12089

Polis, G. A., Power, M. E., & Huxel, G. R. 2004. Food webs at the landscape level. Chicago: University of Chicago Press: p. 548.

Pottier, G., Beaumont, W. R., Marchand, F., Le Bail, P.-Y., Azam, D., Rives, J., Vigoroux, R., & Roussel, J.-M. 2019. Electrofishing in streams of low water conductivity but high biodiversity value: Challenges, limits and perspectives. Fisheries Management and Ecology, 27(1): 52–63. DOI: 10.1111/fme.12384

Quin, T. P., & Adams, D. J. 1996. Environmental changes affecting the migratory timing of American Shad and Sockeye Salmon. Ecology, 77(4), 1151–1162.

Skov, C., Chapman, B. B., Baktoft, H., Brodersen, J., Brönmark, C., Hansson, L. A., Hulthén, K., & Nilsson, P. A. 2013. Migration confers survival benefits against avian predators for partially migratory freshwater fish. Animal Behaviour, 9(2), 20121178. https://doi.org/10.1098/rsbl.2012.1178

Skyfield, J. P., & Grossman, G. D. 2007. Microhabitat use, movements and abundance of gilt darters (Percina evides) in southern Appalachian (USA) streams. Ecology of Freshwater Fish, 17, 219–230.

Stanford, J. A., & Ward, J. V. 1993. An ecosystem perspective of alluvial rivers: Connectivity and hiporreic corridor. Journal of the North American Benthological Society, 12, 48–60.

Telles, M. P. C., Collevatti, R. G., Costa, M. C., Barthem, R. B., Silva Jr, N. J., Souza Neto, A. C., & Diniz-Filho J. A. F. 2011. A geographical genetics framework for inferring homing reproductive behavior in fishes. Genetica, 139, 243–253. DOI: 10.1007/s10709-010-9541-1

Todd, B. L., & Rabeni, C. F. 1989. Movement and habitat use by stream-dwelling smallmouth bass. Transactions of the American Fisheries Society, 118(3), 229–242. https://doi.org/10.1577/1548-8659(1989)118%3C0229:MAHUBS%3E2.3.CO;2

Tsukamoto, K., Miller, M., Kotake, A., Aoyama, J., & Uchida, K. 2009. The origin of fish migration: the random escapement hypothesis. Challenges for Diadromous Fishes in a Dynamic Global Environment,69, 45–62.

Ward, J. V., & Stanford, J. A. 1983. The serial discontinuity concept of lotic systems. In: T. D. Fontaine & S. M. Bartell (Eds.), Dynamics of Lotics Ecosystems. pp. 29–42. Ann Arbor (MI): Ann Arbor Science.

Wilson, C. D., Arnott, G., Reid, N., & Roberts, D. 2011. The pitfall with PIT tags: marking freshwater bivalves for translocation induces short-term behavioural costs. Animal Behaviour, 81, 341–346. DOI:10.1016/j.anbehav.2010.10.003

Winemiller, K. O., Flecker, A. S., & Hoeinghaus, D. J. 2010. Patch dynamics and environmental heterogeneity in lotic ecosystems. Journal of the North American Benthological Society, 29(1), 84–99.

Winemiller, K. O., & Jepsen, D. B. 1998. Effects of seasonality and fish movement on tropical river food webs. Journal of Fish Biology, 53, 267–296.

Xu, Z., Yin, X., Sun, T., Cai, Y., Ding, Y., Yang, W., & Yang, Z. 2017. Labyrinths in large reservoirs: An invisible barrier to fish migration and the solution through reservoir operation. Water Resources Research, 53, 817– 831. DOI:10.1002/2016WR019485.

Yoshioka, H. 2017. A simple game-theoretic model for upstream fish migration. Theory in Biosciences, 136, 99–111. DOI: 10.1007/s12064-017-0244-3

Young, M. K. 1996. Summer movements and habitat use by Colorado River cutthroat trout (Oncorhynchus clarki pleuriticus) in small, montane streams. Cannadian Journal of Fisheries and Aquatic Sciences, 53, 1403–1408. DOI: 10.1139/cjfas-53-6-1403

Published

2021-06-16