SPATIAL AND TEMPORAL DYNAMICS OF PHYTOPLANKTON IN A HIGHLY IMPACTED TROPICAL MONTANE RIVER
Keywords:
bottom-up and top-down controls, climatic and hydrological conditions, eutrophication, potamoplankton, southeastern BrazilAbstract
Rivers, as most bodies of water, are subject to eutrophication and water contamination, mainly from domestic sewage and industrial discharges from urban centers and agricultural areas. These growing human impacts result in a gradual loss of water quality and changes in biotic communities, including phytoplankton. Analyzing the dynamics of phytoplankton is important to understand how, in addition to hydrography and the physical, chemical and biological variables, human impact can be a controlling factor in this dynamic. In this study, we analyzed abiotic variables and zooplankton abundance to identify the factors controlling different phytoplankton attributes at six sampling points, in two climatic periods and three years, in the Piabanha River, a slowly flowing stream with to strong human impact beginning in its upper course, in a mountain region in southeastern Brazil. The results showed homogeneous environmental variables and different phytoplankton attributes along most of the stretch analyzed, except for sampling point 1, located in a preserved forest area but with nutrient concentrations limiting phytoplankton growth. The difference in flow between the two climatic periods (dry and wet) was not sufficient to change the total phytoplankton biovolume. Temperature seemed to strongly affect the phytoplankton response, with larger relative contributions from cyanobacteria in the wet period, with higher temperatures, and from phytoflagellates in the dry period, with lower temperatures. As expected, zooplankton showed no influence on phytoplankton dynamics, with a large contribution from small rotifers. In this tropical montane river, with slow flow and intense human impacts, nutrient concentrations and temperature were the main drivers of the spatial and temporal dynamics of phytoplankton, respectively.
References
Abonyi, A., Leitão, M., Lançon, A. M., & Padisák, J. 2012. Phytoplankton functional groups as indicators of human impacts along the River Loire (France). Hydrobiologia, 698, 233–249.
Alvim, R. B., De Mello, W. V., Silveira, C. S., Kligerman, D. C., & Ribeiro, R. P. 2014. Emissões de óxido nitroso em águas fluviais não poluídas e poluídas da Bacia do Rio Paquequer (Teresópolis, Rio de Janeiro). Engenharia Sanitária e Ambiental, 19(4), 471–478.
Bicudo, C. E. M., & Menezes, M. 2017. Gêneros de algas de águas continentais: chave para identificação e descrições. São Carlos, SP: Rima: p. 552.
Bonecker, C. C., Nagae, M. Y., Bletller, M. C. M., Velho, L. F. M., & Lansac-Tôha, F. A. 2007. Zooplankton biomass in tropical reservoirs in southern Brazil. Hydrobiologia, 579, 115–123.
Bower, C. E., & Holm-Hansen, T. 1980. A salicylate-hypoclorite method for determining ammonia in sea-water. Canadian Journal of Fisheries and Aquatic Sciences, 37, 794–798.
Burdis, R. M. & Hirsch, J. K. 2017. Crustacean zooplankton dynamics in a natural riverine lake, Upper Mississippi River. Journal of Freshwater Ecology, 32(1), 247–265.
Cardoso, S. J., Nabout, J. C., Farjalla, V. F., Lopes, P. M., Bozelli, R. L., Huszar, V. L. M. M., & Roland, F. 2017. Environmental factors driving phytoplankton taxonomic and functional diversity in Amazonian floodplain lakes. Hydrobiologia, 802, 115–130.
Cunha, E. D. S., Cunha, A. C., Silveira Jr., A. M., & Faustino, S. M. M. 2013. Phytoplankton of two rivers in the eastern Amazon: characterization of biodiversity and new occurrences. Acta Botanica Brasilica, 27(2), 364–377.
Da Silva, P. V. R. M., Pecly, J. O. G., & Azevedo, J. P. S. 2017. Uso de traçadores fluorescentes para determinar características de transporte e dispersão no Rio Piabanha (RJ) para a modelagem quali‑quantitativa pelo HEC‑RAS. Engenharia Sanitária e Ambiental, 22(3), 463–472.
De Mello, F. V., de Carvalho, G. O., de Holanda, T. B., Lino, A. S., Júnior, J. R. T., Azevedo, J. P. S., & Torres, J. P. M. 2018. Current state of contamination by persistent organic pollutants and trace elements on Piabanha River basin - Rio de Janeiro, Brazil. The Electronic Journal of Chemistry, 10(4), 327–336.
Descy, J.-P., Darchambeau, F., Lambert, T., Stoyneva‐Gaertner, M. P., Bouillon, S., & Borges, A. V. 2017. Phytoplankton dynamics in the Congo River. Freshwater Biology, 62(1), 87–101.
Devercelli, M., & O’Farrell, I. 2013. Factors affecting the structure and maintenance of phytoplankton functional groups in a nutrient rich lowland river. Limnologica, 43, 67–78.
Elmoor-Loureiro, L. M. A. 1997. Manual de identificação de cladóceros límnicos do Brasil. Brasília: Universa: p. 156.
Fernando, C. H. 2002. A Guide to tropical freshwater zooplankton: Identification, ecology and impact on fisheries. Leiden, The Netherlands: Backhuys Publishers: p. 291.
Gilbert, R. O. 1987. Statistical methods for environmental pollution monitoring. New York, NY: John Wiley & Sons: p. 226.
Golterman, H. L., Clymo, R. S., & Ohnstad, M. A. M. 1978. Methods of physical and chemical analysis of fresh water. Oxford, UK: Blackwell: p. 214.
Gosselain, V., Viroux, L., & Descy, J.-P. 1998a. Can a community of small-bodied grazers control phytoplankton in rivers? Freshwater Biology, 39, 9–24.
Gosselain, V., Joaquim-Justo, C., Viroux, L., Hammer, A., Métens, A., & Schweitzer, S. 1998b. Grazing by large river zooplankton: a key to summer potamoplankton decline? The case of the Meuse and Moselle rivers in 1994 and 1995. Hydrobiologia, 369, 199–216.
Graco-Roza, C., Santos, J. B. O., Huszar, V. L. M., Domingos, P., Soininen, J., & Marinho, M. M. 2020. Downstream transport processes modulate the effects of environmental heterogeneity on riverine phytoplankton. Science of the Total Environment, 703, 135519.
Hillebrand, H., Dürselen, C., Kirschtel, D., Pollingher, U., & Zohary, T. 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology, 35, 403–424.
Hilton, J., O’Hare, M., Bowes, M. J., & Jones, J. I. 2006. How green is my river? A new paradigm of eutrophication in rivers. The Science of the Total Environment, 365(1–3), 66–83.
Instituto Brasileiro de Geografia e Estatística. 2002. Mapa de clima do Brasil. Rio de Janeiro: IBGE. 1 map. Scale 1:5,000,000. Available at: https://atlasescolar.ibge.gov.br/images/atlas/mapas_brasil/brasil_clima.pdf. Access in February 2021.
Jacobsen, D. 2008. Tropical High-Altitude Streams. In: D. Dudgeon (Ed.). Tropical stream ecology. pp. 219–256. San Diego: Academic Press.
Koste, W. 1978. Rotatoria. II Tafelband. Berlin, Stuttgart: Gebrüder Borntraeger: p. 234.
Kruk, C., & Segura, A. M. 2012. The habitat template of phytoplankton morphology-based functional groups. Hydrobiologia, 698, 191–202.
Kruskal, W. H., & Wallis, W. A. 1952. Use of Ranks in One-Criterion Variance Analysis. Journal of the American Statistical Association, 47(260), 583–621.
Kummerow, C., Barnes, W., Kozu, T., Shiue, J., & Simpson, J. 1998. The Tropical Rainfall Measuring Mission (TRMM) sensor package. Journal of Atmospheric and Oceanic Technology, 15, 809–817.
Marques, A. C., Mattos, C. R. C., & Silveira, C. S. 2017. Comportamento hidrológico da Região Serrana do Rio de Janeiro: bacia do Rio Piabanha. Anuário do Instituto de Geociências – UFRJ, 40(2), 82–88.
Medeiros, L. C., Mattos, A., Lürling, M., & Becker, V. 2015. Is the future blue-green or brown? The effects of extreme events on phytoplankton dynamics in a semi-arid man-made lake. Aquatic Ecology, 49, 293–307.
Morris, D. P., & Lewis, W. M. 1988. Phytoplankton nutrient limitation in Colorado mountain lakes. Freshwater Biology, 20, 315–327.
Moura, A. N., Severiano, J. S., Tavares, N. K. A., & Dantas, E. W. 2013. The role of a cascade of reservoirs and seasonal variation in the phytoplankton structure in a tropical river. Brazilian Journal of Biology, 73(2), 291–298.
Naselli-Flores, L., & Barone, R. 2011. Fight on plankton! Or, phytoplankton shape and size as adaptive tools to get ahead in the struggle for life. Cryptogamie, Algologie, 32, 157–204.
Okogwu, O. I., & Ugwumba, A. O. 2013. Seasonal dynamics of phytoplankton in two tropical rivers of varying size and human impact in Southeast Nigeria. Revista de Biología Tropical, 61(4), 1827–1840.
Rangel, L. M., Silva, L. H. S., Rosa, P., Roland, F., & Huszar, V. L. M. 2012. Phytoplankton biomass is mainly controlled by hydrology and phosphorus concentrations in tropical hydroelectric reservoirs. Hydrobiologia, 693, 13–28.
Reynolds, C. S. 1997. Vegetation processes in the pelagic: a model for ecosystem theory. Oldendorf/Luhe: Ecology Institute: p. 371.
Reynolds, C. S. 2000. Hydroecology of river plankton the role of variability in channel flow. Hydrological Processes, 14, 3119–3132.
Reynolds, C. S. 2006. The ecology of phytoplankton. Cambridge, UK: Cambridge University Press: p. 552. DOI: 10.1017/CBO9780511542145
Reynolds, C., & Descy, J. 1996. The production biomass and structure of phytoplankton in large rivers. Archiv für Hydrobiologie, 113, 161–187.
Reynolds, C. S., & Glaister, M. S. 1993. Spatial and temporal changes in phytoplankton abundance in the upper and middle reaches of the River Severn. Archiv für Hydrobiologie, Suppl. 101, Large Rivers, 9, 1–22.
Reynolds, C. S., Huszar, V., Kruk, C., Naselli-Flores, L., & Melo, S. 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research, 24, 417–428.
Rodrigues, E. H. C., Barreto, L. N., Ferreira-Correia, M. M., & Silva, M. R. C. 2015. Variação temporal do fitoplâncton em um rio tropical pré-amazônico (Rio Pindaré, Maranhão, Brasil). Ciência e Natura, 37(2), 241–251.
Rojo, C., Alvarez Cobelas, M., & Arauzo, M. 1994. An elementary, structural analysis of river phytoplankton. Hydrobiology, 289, 43–55.
Roland, F., Lobão, L., Vidal, L., Jeppesen, P., & Huszar, V. 2010. Relationships between pelagic bacteria and phytoplankton abundances in contrasting tropical fresh-waters. Aquatic Microbial Ecology, 60, 261–272.
Rosowski, J. R. 2003. Photosynthetic euglenoids. In: J. D. Wehr & R. G. Sheath (Eds.). Freshwater algae of North America: ecology and classification. pp. 383–416. San Diego, CA: Academic Press.
Santana, L. M., Moraes, M. E. B., Silva, D. M. L., & Ferragut, C. 2016. Spatial and temporal variation of phytoplankton in a tropical eutrophic river. Brazilian Journal of Biology, 76(3), 600–610.
Sas, H. 1989. Lake restoration by reduction of nutrient loading: expectations, experiences, extrapolations. St. Augustin, Germany: Academia Verlag Richarz: p. 497.
Shannon, C. E., & Weaver, W. 1963. The mathematical theory of communication. Urbana, IL: Illinois University Press: p. 117.
Silva, L. H. S., Huszar, V. L. M., Marinho, M. M., Rangel, L. M., Brasil, J., Domingues, C. D., Branco, C. C., & Roland, F. 2014. Drivers of phytoplankton, bacterioplankton, and zooplankton carbon biomass in tropical hydroelectric reservoirs. Limnologica, 48, 1–10.
Silva, L. H. A., De Mello, E. V., & Barbosa, D. R. 2012. Risco ambiental de enchentes nos rios formadores da bacia do rio Piabanha (Região Serrana Fluminense). Anuário do Instituto de Geociências – UFRJ, 35(2), 78–83.
Silveira, C. S., Brandão, V. S., Bernedo, A. V. B., & Mantovano, J. L. 2016. Geochemistry of river suspended sediments in tropical watersheds: anthropogenic and granite gneiss sources, SE Brazil. International Journal of River Basin Management, 14(4), 385–391.
Šmilauer, P., & Lepš, J., 2014. Multivariate analysis of ecological data using CANOCO 5. Cambridge, UK: Cambridge University Press: p. 362.
Soares, M. C. S., Huszar, V. L. M., & Roland, F. 2007. Phytoplankton dynamics in two tropical rivers with different degrees of human impact (Southeast Brazil). River Research and Applications, 23, 698–714.
Ter Braak, C. J. F., & Šmilauer, P. 2012. Canoco reference manual and user’s guide: software for ordination (version 5.0). Ithaca, NY: Microcomputer Power: p. 496.
Troost, T. A., Kooi, B. W., & Kooijman, S. A. L. M. 2005a. Ecological specialization of mixotrophic plankton in a mixed water column. American Naturalist, 166, E45–E61.
Troost, T. A., Kooi, B. W., & Kooijman, S. A. L.M. 2005b. When do mixotrophs specialize? Adaptive dynamics theory Applied to a dynamic energy budget model. Mathematical Biosciences, 193, 159–182.
Utermöhl, H. 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie, 9, 1–38.
Villas-Boas, M. D., Olivera, F., & Azevedo, J. P. S. 2017. Assessment of the water quality monitoring network of the Piabanha River experimental watersheds in Rio de Janeiro, Brazil, using autoassociative neural networks. Environmental Monitoring and Assessment, 189, 439.
Wengrat, S., Padial, A. A., Jeppesen, E., Davidson, T. A., Fontana, L., Costa-Böddeker, S., & Bicudo, D. C. 2018. Paleolimnological records reveal biotic homogenization driven by eutrophication in tropical reservoirs. Journal of Paleolimnology, 60, 299–309.
Whipple, K., Wobus, C., Crosby, B., Kirby, E., & Sheehan, D. 2007. New tools for quantitative geomorphology: extraction and interpretation of stream profiles from digital topographic data, online report. GSA Annual Meeting. Available at: http://www.geomorphtools.org/Tools/StPro/Tutorials/StPro_UserGuidees_Final.pdf
Zalocar de Domitrovic, Y., Devercelli, M., & Forastier, M. E. 2014. Phytoplankton of the Paraguay and Bermejo rivers. In: Freshwater phytoplankton of Argentina. Advances in Limnology, 65, 67–80.