THE ROLE OF HABITAT COUPLING BY ZOOPLANKTON DRIVING POPULATION DYNAMICS AND STABILITY IN SHALLOW LAKES

Authors

  • Gilberto Muniz-Júnior Federal University of Mato Grosso do Sul, Center for Biological and Health Sciences, Graduate Program in Ecology and Conservation, CEP: 79070-900, Campo Grande, MS, Brazil
  • Bruno Figueiredo Federal University of Santa Catarina, Department of Ecology and Zoology, CEP: 88040-970, Florianópolis, SC, Brazil
  • Anderson Gripp Federal University of Rio de Janeiro, Institute of Biodiversity and Sustainability (NUPEM/UFRJ), Post-Graduation Program on Environmental Sciences and Conservation, CEP 27965-045, Macaé, RJ, Brazil.
  • Adriano Caliman Federal University of Rio Grande do Norte, Natal, RN, Brazil.
  • Luciana Carneiro Federal University of Rio Grande do Norte, Natal, RN, Brazil.
  • Rafael Dettogni Guariento Federal University of Mato Grosso do Sul, Center for Biological and Health Sciences, Graduate Program in Ecology and Conservation, CEP: 79070-900, Campo Grande, MS, Brazil

Keywords:

Omnivory, Zooplankton, Phytoplankton, Periphyton, Mathematical modelling

Abstract

Studies of population stability in shallow lakes are yet to explain how fishless ponds, with high algae productivity, can have stable zooplankton-algae populations throughout the year. These studies have traditionally overlooked the role of benthic-pelagic coupling, a phenomenon that has noticeable effects on population stability in aquatic environments. We analyzed a simple model to show that benthic-pelagic habitat coupling can explain discrepancies between the behavior of classical predator-prey models and the patterns observed in natural aquatic systems. We used a Lotka-Volterra type model of zooplankton and algae, explicitly modeled as phytoplankton and periphyton. Zooplankton could eat in both algal compartments, presenting a multi-chain omnivore configuration, whereas phytoplankton and periphyton engage in exploitative competition as system support capacity increases. We also modeled the algal exchange among compartments. Our model results show that (1) zooplankton—algae systems tend to be stable up to high nutrient values at intermediate degrees of omnivory, that (2) algae exchange among compartments may dampen stability and that (3) exploratory competition between phytoplankton and the periphyton can also decrease stability. The model results are supported by empirical results available in the literature. Despite the limitations of the modeling approach, our results emphasize the role of habitat coupling and contribute to deepening the understanding of the processes and mechanisms capable of promoting the stability of population dynamics in shallow lakes.

References

Alboukadel, A., & Kassambara, M.A. 2020. ggpubr: 'ggplot2' based publication ready plots. R package version 0.1, 6.

Alebraheem, J. 2020. Paradox of Enrichment in a Stochastic Predator-Prey Model. Journal of Mathematics, 2020, 8864999. DOI: 10.1155/2020/8864999

Bjornstad, O., Champely, S., Stenseth, N.C., & Saitoh, T. 1996. Cyclicity and Stability of Grey-Sided Voles, Clethrionomys rufocanus, of Hokkaido: Spectral and Principal Components Analyses. Royal Society of London Philosophical Transactions, Series B, 351, 867-875. DOI: 10.1098/rstb.1996.0081

Bodin, P., & Wiman, B. 2004. Resilience and Other Stability Concepts in Ecology: Notes on their Origin, Validity, and Usefulness. ESS Bulletin, 2, 33–43.

De Boer, R., & Scheffer, M. 1995. Implications of Spatial Heterogeneity for the Paradox of Enrichment. Ecology, 76. DOI: 10.2307/1941701

De Kluijver, A., Ning, J., Liu, Z., Jeppesen, E., Gulati, R., & Middelburg, J. 2015. Macrophytes and periphyton carbon subsidies to bacterioplankton and zooplankton in a shallow eutrophic lake in tropical China: Shallow lake macrophytes-periphyton carbon subsidy. Limnology and Oceanography, 60, 375–385. DOI: 10.1002/lno.10040

Devlin, S., Vander Zanden, J., & Vadeboncoeur, Y. 2015. Littoral-benthic primary production estimates: Sensitivity to simplifications with respect to periphyton productivity and basin morphometry. Limnology and Oceanography: Methods, 14, 138-149. DOI: 10.1002/lom3.10080

Grimm, V., Schmidt, E., & Wissel, C. 1992. On the application of stability concepts in ecology. Ecological Modelling, 63, 143–161. DOI: 10.1016/0304-3800(92)90067-O

Grimm, V., & Wissel, C. 1996. Babel, or The Ecological Stability Discussions: An Inventory and Analysis of Terminology and A Guide for Avoiding Confusion. Oecologia, 109, 323–334. DOI: 10.1007/s004420050090

Hassell, M. P., Lawton, J. H., & May, R. M. 1976. Patterns of Dynamical Behaviour in Single-Species Populations. Journal of Animal Ecology, 45, 471–486. DOI: 10.2307/3886

Hobbs, W., Theissen, K., Hagen, S., Bruchu, C., Czeck, B., Ramstack Hobbs, J., & Zimmer, K. 2014. Persistence of clear-water, shallow-lake ecosystems: The role of protected areas and stable aquatic food webs. Journal of Paleolimnology, 51, 405-420. DOI: 10.1007/s10933-013-9763-1

Holling, C.S. 1959. Some Characteristics of Simple Types of Predation and Parasitism. The Canadian Entomologist, 91, 385–398. DOI: 10.4039/Ent91385-7

Hudjetz, S., Hammers-Wirtz, M., Strauss, T., & Ratte, H.-T. 2008. Periphyton as alternative food source for the filter‐feeding cladoceran Daphnia magna. Freshwater Biology, 54, 15–23. DOI: 10.1111/j.1365-2427.2008.02087.x

Jacquet, C., Moritz, C., Morissette, L., Legagneux, P., Massol, F., Archambault, P., & Gravel, D. 2016. No complexity–stability relationship in empirical ecosystems. Nature Communications, 7, 12573. DOI: 10.1038/ncomms12573

Jones, J.I., & Waldron, S. 2003. Combined stable isotope and gut contents analysis of food webs in plant-dominated, shallow lakes. Freshwater Biology, 48, 1396–1407. DOI: 10.1046/j.1365-2427.2003.01095.x

Kretzschmar, M., Nisbet, R. M., & Mccauley, E. 1993. A Predator-Prey Model for Zooplankton Grazing on Competing Algal Populations. Theoretical Population Biology, 44, 32–66. DOI: 10.1006/tpbi.1993.1017

Lancelotti, J., Pozzi, L., Yorio, P., Dieguez, M., & Pascual, M. 2009. Fishless shallow lakes of Southern Patagonia as habitat for waterbirds at the onset of trout aquaculture. Aquatic Conservation: Marine and Freshwater Ecosystems, 19, 497–505. DOI: 10.1002/aqc.1018

Liu, X., Liu, Y., & Wang, H. 2020. Benthic-pelagic coupling in lake energetic food webs. Ecological Modelling, 417, 108928. DOI: 10.1016/j.ecolmodel.2019.108928

Lotka 1925. Elements of Physical Biology. Nature 116, 461–461. DOI: 10.1038/116461b0

MacArthur 1955. MacArthur’s 1955 Stability Function is Related to Formal Dynamic Measures of Food Web Stability. DOI: 10.1101/477406

May, R. 1974. Biological Populations with Nonoverlapping Generations: Stable Points, Stable Cycles, and Chaos. Science, 186, 645–7. DOI: 10.1126/science.186.4164.645

Mccann, K. 2000. The diversity–stability debate. Nature, 405, 228–233. DOI: 10.1038/35012234

McCann, K., & Hastings, A. 1997. Re–evaluating the omnivory–stability relationship in food webs. Proceedings of the Royal Society of London. Series B: Biological Sciences, 264, 1249–1254. DOI: 10.1098/rspb.1997.0172

Monteith, D.T., Stoddard, J.L., Evans, C.D., de Wit, H.A., Forsius, M., Høgåsen, T., Wilander, A., Skjelkvåle, B.L., Jeffries, D.S., Vuorenmaa, J., Keller, B., Kopácek, J., & Vesely, J. 2007. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature, 450, 537–540. DOI: 10.1038/nature06316

Mueller, L., & Ayala, F. 1981. Trade-Off between r-Selection and K-Selection in Drosophila Populations. Proceedings of the National Academy of Sciences of the United States of America, 78, 1303–5. DOI: 10.1073/pnas.78.2.1303

Paine, R.T. 1969. A Note on Trophic Complexity and Community Stability. The American Naturalist, 103, 91–93.

Pimm, S. 1978. Feeding on more than one trophic level. Nature, 275, 542–544. DOI: 10.1038/275542a0

Polis, G., & Strong, D. 1996. Food Web Complexity and Community Dynamics. American Naturalist, 147, 813–846. DOI: 10.1086/285880

Post, D., Conners, M., & Goldberg, D. 2000. Prey Preference by a Top Predator and the Stability of Linked Food Chains. Ecology, 81, 8–14. DOI: 10.2307/177129

Reinl, K.L., Brookes, J.D., Carey, C.C., Harris, T.D., Ibelings, B.W., Morales-Williams, A.M., De Senerpont Domis, L.N., Atkins, K.S., Isles, P.D.F., Mesman, J.P., North, R.L., Rudstam, L.G., Stelzer, J.A.A., Venkiteswaran, J.J., Yokota, K., & Zhan, Q. 2021. Cyanobacterial blooms in oligotrophic lakes: Shifting the high-nutrient paradigm. Freshwater Biology, 66, 1846–1859. DOI: 10.1111/fwb.13791

Roozen, F.C.J.M., Lurling, M., Keizer-Vlek, H., Kraan, E., Ibelings, B., & Scheffer, M. 2007. Resuspension of algal cells by benthivorous fish boosts phytoplankton biomass and alters community structure in shallow lakes. Freshwater Biology, 52 (2007) 6.

Rose, K.A., Swartzman, G.L., Kindig, A.C., & Taub, F.B. 1988. Stepwise iterative calibration of a multi-species phytoplankton-zooplankton simulation model using laboratory data. Ecological Modelling, 42, 1–32. DOI: 10.1016/0304-3800(88)90089-0

Rosenzweig, M. 1971. Paradox of Enrichment: Destabilization of Exploitation Ecosystems in Ecological Time. Science, 171, 385–7. DOI: 10.1126/science.171.3969.385

Scheffer, M. 1991. Fish and Nutrients Interplay Determines Algal Biomass: A Minimal Model. Oikos, 62, 271–282. DOI: 10.2307/3545491

Scheffer, M., Portielje, R., & Zambrano, L. 2003. Fish facilitate wave resuspension of sediment. Limnology and Oceanograph, 48, 1920–1926. DOI: 10.4319/lo.2003.48.5.1920

Scheffer, M., & van Nes, E. H. 2007. Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia, 584, 455–466. DOI: 10.1007/s10750-007-0616-7

Schindler, D., & Scheuerell, M. 2002. Habitat Coupling in Lake Ecosystems. Oikos, 98, 177–189. DOI: 10.1034/j.1600-0706.2002.980201.x

Soetaert, K., Petzoldt, T., & Setzer, R. W. 2010. Solving differential equations in R: package deSolve. Journal of Statistical Software, 33, 1-25.

Turchin, P., & Taylor, A. 1992. Complex Dynamics in Ecological Time Series. Ecology, 73, 289–305. DOI: 10.2307/1938740

Vadeboncoeur, Y., Mccann, K., Vander Zanden, J., & Rasmussen, J. 2005. Effects of Multi-chain Omnivory on the Strength of Trophic Control in Lakes. Ecosystems, 8, 1–12. DOI: 10.1007/s10021-003-0149-5

van Moorsel, S.J., Hahl, T., Petchey, O.L., Ebeling, A., Eisenhauer, N., Schmid, B., & Wagg, C. 2021. Co-occurrence history increases ecosystem stability and resilience in experimental plant communities. Ecology, 102, e03205. DOI: 10.1002/ecy.3205

Vanni, M., Arend, K., Bremigan, M., Bunnell, D., Garvey, J., González, M., Renwick, W., Soranno, P.A., & Stein, R. 2005. Linking Landscapes and Food Webs: Effects of Omnivorous Fish and Watersheds on Reservoir Ecosystems. Bioscience, 55, 155-167. DOI: 10.1641/0006-3568(2005)055[0155:LLAFWE]2.0.CO;2

Wang, T., Wang, Q., Xia, S., Yan, C., & Pei, G. 2019. Response of benthic algae to environmental conditions in an urban lake recovered from eutrophication, China. Journal of Oceanology and Limnology, 38. DOI: 10.1007/s00343-019-8362-z

Wickham, H. 2016. ggplot2: elegant graphics for data analysis. Springer-Verlag New York.

Yang, Q., Fowler, M., Jackson, A., & Donohue, I. 2019. The predictability of ecological stability in a noisy world. Nature Ecology & Evolution, 3, 251-259. DOI: 10.1038/s41559-018-0794-x

Additional Files

Published

2022-07-08