CONSERVAÇÃO DE PEIXES DE RIACHO: PLANEJAMENTO E POLÍTICAS PÚBLICAS
DOI:
https://doi.org/10.4257/oeco.2021.2502.20Keywords:
Systematic conservation planning, freshwater ecosystems, ecological niche modeling, action plan for species conservation, impact reduction plan for species conservation, conservation in BrazilAbstract
A biologia da conservação, historicamente, alicerçou seus princípios e fundamentos tendo os ambientes terrestres como palco principal; ambientes aquáticos, sempre estiveram nos bastidores. Embora com foco terrestre, as áreas protegidas oferecem algum tipo de proteção aos organismos aquáticos, porém comumente deixam de fora alguns elementos fundamentais da paisagem de ambientes aquáticos, como a conectividade de rios, lagos e riachos, o que compromete a reprodução e persistência dos organismos aquáticos. A preservação dos ecossistemas terrestres é fundamental, mas a reflexão que gostaríamos de suscitar é a de valorização dos ecossistemas aquáticos, não em detrimento aos terrestres, e sim em adição a eles. Os ambientes de águas continentais são sistemas hierárquicos e aninhados, possuindo conexões tanto longitudinais (montante-jusante) quanto laterais (afluentes, lagos e planície de inundação), e ainda conexões temporais (inundações sazonais) e verticais (aquíferos, lençol freático). A metodologia utilizada para conservação na escala de paisagem é o Planejamento Sistemático para a Conservação (PSC). Essa análise espacial leva em consideração relações de custo-benefício baseadas em fatores ecológicos, normalmente área de distribuição, e socioeconômicos, e resulta em mapas temáticos de áreas prioritárias para conservação. Originalmente, o PSC não levou em consideração a conectividade dos ecossistemas de águas continentais, recentemente incorporada aos algoritmos de priorização espacial para conservação. Os mapas gerados a partir dessa priorização espacial ajudam a direcionar ações para a conservação e manejo de espécies, e para a confecção de planos de redução de impacto (PRIM) e planos de ação para espécies ameaçadas (PAN). Esses planos devem ser viáveis não só em termos ecológicos, mas também econômicos. Os PRIM e PAN também utilizam informações sobre a ecologia das espécies, e focam em ações para combater ou diminuir os riscos de ameaça às populações ou ao ambiente onde vivem as espécies ou grupos taxonômicos, foco desses planos, que são instrumentos importantes de políticas públicas ambientais no Brasil. Com isso, o PSC tem sido uma ferramenta importante de integração entre academia, sociedade e tomadores de decisões, com potencial para melhorar a gestão de recursos e ecossistemas.
STREAM FISH CONSERVATION: PLANNING AND PUBLIC POLICIES: Conservation biology has historically been based on principles to protect terrestrial ecosystems, with marine and freshwater ecosystems left behind. As a result, often, protected areas are defined with bases in forest cover and terrestrial characteristics overseeing important components of connectivity of riverine landscapes, such as the connectivity between rivers, lakes, and streams. It is important to emphasize that forest protection is extremely important, but that alone cannot safeguard the protection of freshwater ecosystems. Therefore, our discussion should lead, not to the disregard of terrestrial efforts but to the complementation of existing efforts for forest protection with the addition of areas that can also protect freshwater ecosystems. Fluvial ecosystems are hierarchical and nested systems, with multidimensional connectivity including longitudinal (upstream-downstream), lateral (floodplains and lakes), temporal (seasons) and vertical (groundwaters) connections. Systematic Conservation Planning (SCP) is the most well accepted and used method for designing conservation plans based on cost-effective scenarios that include ecological and socio-economic values resulting in thematic maps of priority areas for conservation. Recently, methods to consider the connectivity of freshwater ecosystems were incorporated into spatial prioritization tools. Maps produced using spatial prioritization tools can help decision making on species management and conservation actions, such as plans for species’ impact reduction (PRIM) and action plans for threatened species (PAN). PRIM and PAN use information about species ecology to focus conservation actions onto target species. These conservation action plans must be viable not only ecologically but also economically. In this context, using SCP to guide designs of PRIM and PAN can help stakeholders to achieve better conservation actions in Brazil. Thus, the SCP can improve the conservation and management of freshwater ecosystems, through the integration of science, society and stakeholder.References
Abell, R., Lehner, B., Thieme, M., & Linke, S. 2017. Looking Beyond the Fenceline: Assessing Protection Gaps for the World’s Rivers. Conservation Letters, 10(4), 384–394. DOI: 10.1111/conl.12312
Amatulli, G., Domisch, S., Tuanmu, M.-N., Parmentier, B., Ranipeta, A., Malczyk, J., & Jetz, W. 2018. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Scientific Data, 5(1), 180040. DOI: 10.1038/sdata.2018.40
Austin, M. P., & Margules, C. R. 1986. Assessing Representativeness. Pages 45–67. In Usher, M B. Wildlife Conservation Evaluation.Chapman and Hall Ltd.
Asmyhr, M. G., Linke, S., Hose, G., & Nipperess, D. A. 2014. Systematic Conservation Planning for Groundwater Ecosystems Using Phylogenetic Diversity. PloS One, 9(12), 1–15. DOI: 10.1371/journal.pone.0115132
Ball, I. R., Possingham, H. P., & Watts, M. 2009. Spatial conservation prioritisation: Quantitative methods and computational tools. In: A. Moilanen, K. A. Wilson, & H. P. Possingham (Eds.), Marxan and relatives: Software for spatial conservation prioritisation. pp. 185–195. Oxford, UK: Oxford University Press.
Brasil. 1981. Dispõe sobre a Política Nacional do Meio Ambiente, seus fins e mecanismos de formulação e aplicação, e dá outras providências., Lei Federal no 6.938, de 31 de agosto de 1981 Brasil.
Brasil. 2004. Define regras para identificação de áreas prioritárias para a conservação, utilização sustentável e repartição dos benefícios da biodiversidade, no âmbito das atribuições do Ministério do Meio Ambiente, Decreto No 5.092, de 21 de maio de 2004.
Brasil. 2012. Dispõe sobre a proteção da vegetação nativa; altera as Leis nºs 6.938, de 31 de agosto de 1981, 9.393, de 19 de dezembro de 1996, e 11.428, de 22 de dezembro de 2006; revoga as Leis nºs 4.771, de 15 de setembro de 1965, e 7.754, de 14 de abril de 1989, e a Medida Provisória nº 2.166-67, de 24 de agosto de 2001; e dá outras providências. Lei No 12.651, de 25 de maio de 2012.
Brejão, G. L., Leal, C. G. & Gerhard, P. 2021. A ecologia de peixes de riachos sob a perspectiva da ecologia de paisagens. Oecologia Australis, 25 (02), 477–495. DOI: 10.4257/oeco.2021.2502.16
Castro, R. M. C., & Polaz, C. N. M. 2020. Small-sized fish: the largest and most threatened portion of the megadiverse neotropical freshwater fish fauna. Biota Neotropica, 20(1), e20180683. DOI: 10.1080/0141192042000195227
Ciarleglio, M., Wesley Barnes, J., & Sarkar, S. 2009. ConsNet: New software for the selection of conservation area networks with spatial and multi-criteria analyses. Ecography, 32(2), 205–209. DOI: 10.1111/j.1600-0587.2008.05721.x
De Marco, P., & Nóbrega, C. C. 2018. Evaluating collinearity effects on species distribution models: An approach based on virtual species simulation. PLOS ONE, 13(9), e0202403. DOI: 10.1371/journal.pone.0202403
Decker, E., Linke, S., Hermoso, V., & Geist, J. 2017. Incorporating ecological functions in conservation decision making. Ecology and Evolution, 7(20), 8273–8281. DOI: 10.1002/ece3.3353
Domisch, S., Amatulli, G., & Jetz, W. 2015. Near-global freshwater-specific environmental variables for biodiversity analyses in 1 km resolution. Scientific Data, 2. DOI: 10.1038/sdata.2015.73
Dudley, N. 2008. Guidelines for applying protected area management categories. N. Dudley (Ed.),Guidelines for applying protected area management categories. Gland: IUCN: p. 86. DOI: 10.2305/IUCN.CH.2008.PAPS.2.en
Eken, G., Bennun, L., Brooks, T. M., Darwall, W., Fishpol, Li. D. C., Foster, M., Knox, D., Langhammer, P., Matiku, P., Radford, E., Salaman, P., Sechrest, W., Smith, M. L., Spector, S., & Tordoff, A. 2004. Key Biodiversity Areas as Site Conservation Targets. BioScience, 54(12), 1110. DOI: 10.1641/0006-3568(2004)054[1110:kbaasc]2.0.co;2
Fick, S. E., & Hijmans, R. J. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. DOI: 10.1002/joc.5086
Frederico, R. G., De Marco, P., & Zuanon, J. 2014. Evaluating the use of macroscale variables as proxies for local aquatic variables and to model stream fish distributions. Freshwater Biology, 2303–2314. DOI: 10.1111/fwb.12432
Frederico, R. G., Zuanon, J., & De Marco Jr, P. 2018. Amazon protected areas and its ability to protect stream-dwelling fish fauna. Biological Conservation, 219, 12–19. DOI: 10.1016/j.biocon.2017.12.032
Guisan, A., & Zimmermann, N. E. 2000. Predictive habitat distribution models in ecology., 135, 147–186.
Hanson, J. O., Schuster, R., Morrell, N., Strimas-Mackey, M Watts, M. E., Arcese, P., Bennett, J., & Possingham, H. P. 2020. prioritizr: Systematic Conservation Prioritization in R. R Package Version 5.0.1.6. Available at Https://Github.Com/Prioritizr/Prioritizr.
Hermoso, V., Linke, S., Prenda, J., & Possingham, H. P. 2011a. Addressing longitudinal connectivity in the systematic conservation planning of fresh waters. Freshwater Biology, 56(1), 57–70. DOI: 10.1111/j.1365-2427.2009.02390.x
Hermoso, V, Kennard, M., Pusey, B., & Douglas, M. 2011b. Identifying priority areas for the conservation of freshwater biodiversity. In: B. J. Pusey (Ed.), Aquatic Biodiversity in Northern Australia: Patterns, Threats and Future. pp. 133 – 149. Darwin: Charles Darwin University Press.
Hermoso, Virgilio, Filipe, A. F., Segurado, P., & Beja, P. 2015. Effectiveness of a large reserve network in protecting freshwater biodiversity: a test for the Iberian Peninsula. Freshwater Biology, 60(4), 698–710. DOI: 10.1111/fwb.12519
Hermoso, Virgilio, Kennard, M. J., & Linke, S. 2012. Integrating multidirectional connectivity requirements in systematic conservation planning for freshwater systems. Diversity and Distributions, 18(5), 448–458. DOI: 10.1111/j.1472-4642.2011.00879.x
Hermoso, Virgilio, Ward, D. P., & Kennard, M. J. 2013. Prioritizing refugia for freshwater biodiversity conservation in highly seasonal ecosystems. Diversity and Distributions, 19(8), 1031–1042. DOI: 10.1111/ddi.12082
Hess, G. R., Bartel, R. A., Leidner, A. K., Rosenfeld, K. M., Rubino, M. J., Snider, S. B., & Ricketts, T. H. 2006. Effectiveness of biodiversity indicators varies with extent, grain, and region. Biological Conservation, 132(4), 448–457. DOI: 10.1016/j.biocon.2006.04.037
ICMBio. 2018a. Livro Vermelho da Fauna Brasileira Ameaçada de Extinção:Volume I. ICMBio/MMA (Ed.), Brasília: MMA: p. 492.
ICMBio. 2018b. PLANO DE REDUÇÃO DE IMPACTOS À BIODIVERSIDADE. ICMBio (Ed.), Brasília: MMA/ICMBio: p. 62.
IUCN. 2016. Rules of Procedure IUCN Red List Assessment Process 2017-2020. p. 1–37.
Jézéquel, C., Tedesco, P. A., Darwall, W., Dias, M. S., Frederico, R. G., Hidalgo, M., Hugueny, B., Maldonado‐Ocampo, J., Martens, K., Ortega, H., Torrente‐Vilara, G., Zuanon, J., & Oberdorff, T. 2020. Freshwater fish diversity hotspots for conservation priorities in the Amazon Basin. Conservation Biology, 00(0), cobi.13466. DOI: 10.1111/cobi.13466
Jiménez-Valverde, A., & Lobo, J. M. 2007. Threshold criteria for conversion of probability of species presence to either–or presence–absence. Acta Oecologica, 31(3), 361–369. DOI: 10.1016/j.actao.2007.02.001
Kelley, C., Garson, J., Aggarwal, A., & Sarkar, S. 2002. Place prioritization for biodiversity reserve network design: A comparison of the SITES and ResNet software packages for coverage and efficiency. Diversity and Distributions, 8(5), 297–306. DOI: 10.1046/j.1472-4642.2002.00155.x
Leal, C.G., Lennox, G.D., Ferraz, S.B., Ferreira, J., Gardner, T.A., Thomson, J.R., Berenguer, E., Lees, A.C., Hughes, R.M., MacNally, R., Aragão, L.E.O.C., Brito, J.G., Castello, L., Garret, R., Hamada, N., Juen, L., Leitão, R.P., Louzada, J., Morello, T.F., Nárgila, G.M., Nessimian, J.L., Oliveira-Junior, J.M., Oliveira, V.H.F., Oliveira, V.C., Parry, L., Pompeu, P.S., Solar R.R. Zuanon, J., & Barlow, J. 2020. Integrated terrestrial-freshwater planning doublés conservation of tropical aquatic species. Science, 370, 117-121. DOI: 10.1126/science.aba7580
Lehner, B., & Grill, G. 2013. Global river hydrography and network routing: Baseline data and new approaches to study the world’s large river systems. Hydrological Processes, 27(15), 2171–2186. DOI: 10.1002/hyp.9740
Linke, S., & Turak, E. 2011. Freshwater conservation planning: an introduction. Freshwater Biology. 56, 1–5. doi:10.1111/j.1365-2427.2010.02515.x
Linke, S., Turak, E., & Nel, J. 2011. Freshwater conservation planning: The case for systematic approaches. Freshwater Biology. 56, 6–20 .DOI: 10.1111/j.1365-2427.2010.02456.x
Linke, S., Kennard, M. J., Hermoso, V., Olden, J. D., Stein, J., & Pusey, B. J. 2012. Merging connectivity rules and large-scale condition assessment improves conservation adequacy in river systems. Journal of Applied Ecology, 49(5), 1036–1045. DOI: 10.1111/j.1365-2664.2012.02177.x
Linke, S., Lehner, B., Ouellet Dallaire, C., Ariwi, J., Grill, G., Anand, M., Beames, P., Burchard-Levine, V., Maxwell, S., Moidu, H., Tan, F., & Thieme, M. 2019a. Global hydro-environmental sub-basin and river reach characteristics at high spatial resolution. Scientific Data, 6(1), 283. DOI: 10.1038/s41597-019-0300-6
Linke, S., Turak, E., Asmyhr, M. G., & Hose, G. 2019b. 3D conservation planning: Including aquifer protection in freshwater plans refines priorities without much additional effort. Aquatic Conservation: Marine and Freshwater Ecosystems, 29(7), 1063–1072. DOI: 10.1002/aqc.3129
Margules, C. R., & Pressey, R. L. 2000. Systematic conservation planning. Nature, 405, 243–253. DOI: 10.1038/35012251
McGarvey, D. J., Menon, M., Woods, T., Tassone, S., Reese, J., Vergamini, M., & Kellogg, E. 2018. On the use of climate covariates in aquatic species distribution models: are we at risk of throwing out the baby with the bath water? Ecography, 41(4), 695–712. DOI: 10.1111/ecog.03134
Moffett, A., Garson, J., & Sarkar, S. 2005. MultCSync: A software package for incorporating multiple criteria in conservation planning. Environmental Modelling and Software, 20(10), 1315–1322. DOI: 10.1016/j.envsoft.2004.10.001
Moilanen, Atte. 2005. Methods for reserve selection: Interior point search. Biological Conservation, 124(4), 485–492. DOI: 10.1016/j.biocon.2005.02.012
Moilanen, Atte, Leathwick, J., & Elith, J. 2008. A method for spatial freshwater conservation prioritization. Freshwater Biology, 53, 577–592. DOI: 10.1111/j.1365-2427.2007.01906.x
Mota-Vargas, C., & Rojas-Soto, O. R. 2012. The importance of defining the geographic distribution of species for conservation: The case of the Bearded Wood-Partridge. Journal for Nature Conservation, 20(1), 10–17. DOI: 10.1016/j.jnc.2011.07.002
Myers, N. 1988. Threatened biotas: “Hot spots” in tropical forests. The Environmentalist, 8(3), 187–208. DOI: 10.1007/BF02240252
Myers, N. A., Mittermeier, R. A., Mittermeier, G. C., da Fonseca, G. A. B., & Kent, J. 2000. Biodiversity hotspots for conservation priorities. Nature, 403(February), 853–858. DOI: 10. 1038/35002501
Nel, J. L., Roux, D. J., Maree, G., Kleynhans, C. J., Moolman, J., Reyers, B., Rouget, M., & Cowling, R. M. 2007. Rivers in peril inside and outside protected areas: a systematic approach to conservation assessment of river ecosystems. Diversity and Distributions, 13(3), 341–352. DOI: 10.1111/j.1472-4642.2007.00308.x
Peres, C. A., & Terborgh, J. W. 1995. Amazonian Nature Reserves: An Analysis of the Defensibility Status of Existing Conservation Units and Design Criteria for the Future. Conservation Biology, 9(1), 34–46.
Peterson, A. T., & Soberón, J. 2012. Species Distribution Modeling and Ecological Niche Modeling : Getting the Concepts Right. Natureza e Conservação, 10, 102–107.
Peterson, A. T., Sobéron, J., Pearson, R. G., Anderson, R. P., Martínez-Meyer, E., Nakamura, M., & Araújo, M. B. 2011. Ecological Niches and Geographic Distributions. First First ed. Oxfordshire: Princeton University Press: p. 314.
Possingham, H., Wilson, K. A., Andelman, S. J., & Vynne, C. H. 2006. Protected Areas: Goals, Limitations, and Design. In: M. J. Groom, G. K. Meffe, & C. C. R (Eds.), Principles of Conservation Biology. pp. 507–549. Macmillan Education.
Pressey, R L, Whish, G. L., Barrett, T. W., & Watts, M. E. 2002. Effectiveness of protected areas in north-eastern New South Wales: recent trends in six measures. Biological Conservation, 106(1), 57–69. DOI: Pii S0006-3207(01)00229-4rDoi 10.1016/S0006-3207(01)00229-4
Pressey, Robert L., Cabeza, M., Watts, M. E., Cowling, R. M., & Wilson, K. A. 2007. Conservation planning in a changing world. Trends in Ecology and Evolution, 22(11), 583–592. DOI: 10.1016/j.tree.2007.10.001
Pressey, Robert L, Watts, M. E., Barrett, T. W., & Ridges, M. J. 2009. The C-Plan Conservation Planning System : Origins , Applications , and Possible Futures. Spatial Conservation Prioritization, (May 2014), 211–234.
Reis, V., Hermoso, V., Hamilton, S. K., Ward, D., Fluet-Chouinard, E., Lehner, B., & Linke, S. 2017. A global assessment of inland wetland conservation status. BioScience, 67(6), 523–533.
Reis, V., Hermoso, V., Hamilton, S. K., Bunn, S. E., & Linke, S. 2019a. Conservation planning for river-wetland mosaics: A flexible spatial approach to integrate floodplain and upstream catchment connectivity. Biological Conservation, 236(May), 356–365. DOI: 10.1016/j.biocon.2019.05.042
Reis, V., Hermoso, V., Hamilton, S. K., Bunn, S. E., Fluet-Chouinard, E., Venables, B., & Linke, S. 2019b. Characterizing seasonal dynamics of Amazonian wetlands for conservation and decision making. Aquatic Conservation: Marine and Freshwater Ecosystems, 1– 10. DOI: https://doi.org/10.1002/aqc.3051
Rosset, V., Simaika, J. P., Arthaud, F., Bornette, G., Vallod, D., Samways, M. J., & Oertli, B. 2013. Comparative assessment of scoring methods to evaluate the conservation value of pond and small lake biodiversity. Aquatic Conservation: Marine and Freshwater Ecosystems, 23(1), 23–36. DOI: 10.1002/aqc.2287
Shafer, C. L. 1999. National park and reserve planning to protect biological diversity: some basic elements. Landscape and Urban Planning, 44(2–3), 123–153. DOI: 10.1016/S0169-2046(98)00115-7
SNUC. 2000. Decreto-lei no 9.985, de 18 de julho de 2000. Sistema Nacional de Unidades de Conservação. Brasília, Brasil.
Soberón, J. 2007. Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters, 10(12), 1115–1123. DOI: 10.1111/j.1461-0248.2007.01107.x
Soulé, M E. 1987. Viable Populations for Conservation. Michael E. Soulé (Ed.),Cambridge University Press.
Souza, E.C.F., Brant, A., Rangel, C.A., Barbosa, L.E., Carvalho, C.E.G., Jorge, R.S.P., Subirá, R. 2018. Avaliação do risco de extinção da fauna brasileira: Ponto de partida para conservação da biodiversidade. Diversidade e Gestão 2(2), 62-75.
Strayer, D. L., & Dudgeon, D. 2010. Freshwater biodiversity conservation: recent progress and future challenges. Journal of the North American Benthological Society, 29(1), 344–358. DOI: 10.1899/08-171.1
Strecker, A. L., Olden, J. D., Whittier, J. B., & Paukert, C. P. 2011. Defining conservation priorities for freshwater fishes according to taxonomic, functional, and phylogenetic diversity. Ecological Applications, 21(8), 3002–3013. DOI: 10.1890/11-0599.1
Thieme, M., Lehner, B., Abell, R., Hamilton, S. K., Kellndorfer, J., Powell, G., & Riveros, J. C. 2007. Freshwater conservation planning in data-poor areas: An example from a remote Amazonian basin (Madre de Dios River, Peru and Bolivia). Biological Conservation, 135(4), 484–501. DOI: 10.1016/j.biocon.2006.10.054
Tuanmu, M.-N., & Jetz, W. 2015. A global, remote sensing-based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Global Ecology and Biogeography, 24(11), 1329–1339. DOI: 10.1111/geb.12365
Venticinque, E., Forsberg, B., Barthem, R., Petry, P., Hess, L., Mercado, A., Cañas, C., Montoya, M., Durigan, C., & Goulding, M. 2016. An explicit GIS-based river basin framework for aquatic ecosystem conservation in the Amazon. Earth System Science Data, 8, 651–661. DOI: 10.5063/F1BG2KX8.1
Vieira, R. R. S., Pressey, R. L., & Loyola, R. 2019. The residual nature of protected areas in Brazil. Biological Conservation, 233(March 2018), 152–161. DOI: 10.1016/j.biocon.2019.02.010
Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, a, Green, P., Glidden, S., Bunn, S. E., Sullivan, C. a, Liermann, C. R., & Davies, P. M. 2010. Global threats to human water security and river biodiversity. Nature, 467(7315), 555–561. DOI: 10.1038/nature09549
Ward, J. V. 1989. The four-dimensional nature of lotic ecosystems. Journal of the North American Benthological Society, 8(1), 2–8. DOI: 10.2307/1467397
Watson, J. E. M., Grantham, H. S., Wilson, K. A., & Possingham, H. P. 2011. Systematic conservation planning: past, present and future. Conservation Biogeography, (APRIL), 136–160. DOI: 10.1002/9781444390001.ch6
Williams, P., Gibbons, D., Margules, C., Rebelo, A., Humphries, C., & Pressey, R. 1996. A comparison of richness hotspots, rarity hotspots, and complementary areas for conserving diversity of British birds. Conservation Biology, 10(1), 155–174. DOI: 10.1046/j.1523-1739.1996.10010155.x
WWF. 2015. Áreas Prioritárias para Conservação da Biodiversidade no Cerrado e Pantanal. WWF (Ed.), Brasilia: WWF - Brasil: p. 128.