FISH-KILLING DIATOM BLOOM IN AN URBAN RECREATIONAL POND: AN INDEX CASE FOR A GLOBAL WARMING SCENARIO?

Authors

  • Valeria Casa Consejo Nacional de Investigaciones Científicas y Técnicas ,Universidad Nacional de San Martín, Instituto de Investigación e Ingeniería Ambiental, Laboratorio de Biodiversidad, Limnología y Biología de la Conservación, Campus Miguelete, CP 1650, San Martín, Buenos Aires, Argentina.
  • Florencia Brancolini 2Consejo Nacional de Investigaciones Científicas y Técnicas ,Universidad Nacional de San Martín, Instituto de Investigación e Ingeniería Ambiental, Grupo de Ecología Pesquera Aplicada, Campus Miguelete, CP 1650, San Martín, Buenos Aires, Argentina.
  • Diana Mielnicki Instituto de Investigación e Ingeniería Ambiental, Grupo de Meteorología, Campus Miguelete, CP 1650, San Martín, Buenos Aires, Argentina.
  • Gabriela Mataloni Consejo Nacional de Investigaciones Científicas y Técnicas ,Universidad Nacional de San Martín, Instituto de Investigación e Ingeniería Ambiental, Laboratorio de Biodiversidad, Limnología y Biología de la Conservación, Campus Miguelete, CP 1650, San Martín, Buenos Aires, Argentina.

DOI:

https://doi.org/10.4257/oeco.2020.2404.11

Keywords:

climate change, diatoms, fish kill, harmful algal bloom, urban lakes

Abstract

By the end of the exceptionally warm and stormy autumn of 2018, a fish kill occurred in a small hypertrophic pond located in a recreative green area in Buenos Aires (BA, Argentina). As there were no visible signs of an algal bloom, the causes for the die-off were investigated. On 1st June, the pond was sampled while fish, mostly Bryconamericus iheringii (Characidae) and Australoheros facetus (Cichlidae) were still dying. Despite low turbidity (18.9 NTU) and chlorophyll a concentration values  (15.90 µg/L) as compared to similar BA waterbodies, a heavy bloom of planktonic araphid diatoms (161,600 ind/mL) was detected, mainly caused by Fragilaria saxoplanctonica (Fragilariaceae), Pseudostaurosira neoelliptica (Fragilariaceae) and Ulnaria cf. acus (Fragilariaceae). Previous records of high abundances of these or closely related planktonic diatoms around the world were associated with increased temperature and nutrient content, yet they did not cause other than nuisance blooms. Fish necropsy showed good body condition except for gill damage and mucus accumulation due to a large amount of frustules of these species, mainly P. neoelliptica, interspersed in the gill filaments. Although this is a common cause for die-offs in marine fish farms, it is unprecedented in freshwater systems, and particularly in urban waterbodies. Conversely to more common –and foreseeable- summer cyanobacterial blooms in these systems, this phenomenon was triggered by an autumnal weather anomaly. This fact is crucial, as non-summer heat waves and heavy storms are predicted to increase in frequency and intensity over the subtropical regions, yet their ecological consequences are less perceived, seldom studied, and far from understood. This could be the first documented case of many to occur in such heavily eutrophicated environments unless effective strategies for eutrophication control and management are taken.

References

Allende, L., Fontanarrosa M. S., Murno A., & Sinistro R. 2019. Phytoplankton functional group classifications as a tool for biomonitoring shallow lakes: a case study. Knowledge & Management of Aquatic Ecosystems, (420), 5. DOI: 10.1051/kmae/2018044

APHA, 2005. Standard Methods for the Examination of Water and Wastewater, 21st Edition. American Public Health Association APHA, AWWA, WEF, Washington DC: p. 1368.

Avigliano, L., Vinocur A., Chaparro G., Tell G., & Allende L. 2014. Influence of re-flooding on phytoplankton assemblages in a temperate wetland following prolonged drought. Journal of limnology, 73(2), 45–60. DOI:10.4081/jlimnol.2014.838

Buenos Aires. 2018. Official information of the Buenos Aires City Government. Retrieved from www.buenosaires.gob.ar/laciudad/ciudad.

Casa, V., López Bedogni G., & Van de Vijver B. 2017. A new Aulacoseira species (Bacillariophyta) from Tierra del Fuego (Argentina) and comparison with the type material of Melosira laevis var. fuegiana Frenguelli. Diatom research, 32(4), 409–416. DOI: 10.1080/0269249X.2017.1401010

Ehrenhaus, C., & Vigna M. S. 2006. Changes in the phytoplankton of Lake Planetario after restoration process. Darwiniana 44(2): 319–328.

Estadística Ciudad. 2018. Ministerio de Ambiente y Espacio Público. Dirección General de Espacios Verdes. Estadísticas para la ciudad de Buenos Aires. Retrieved from www.estadisticaciudad.gob.ar/eyc/?p=69834.

Fritz, S. C., Benito X., & Steinitz-Kannan M. 2018. Long-term and regional perspectives on recent change in lacustrine diatom communities in the tropical Andes. Journal of paleolimnology, 61(2), 251–262. DOI.10.1007/s10933-018-0056-6.

Fryxell, G. A., & Hasle G. R. 2003. Taxonomy of harmful diatoms. Manual on Harmful Marine Microalgae. Paris. Intergovernmental Oceanographic Commission, UNESCO, 11: 465–509.

Gómez, S. E. 2014. Analysis of fish kills in the Twentieth Century, Argentina, South America. Bioikos, Campinas, 28(2), 95–102.

Hillebrand, H., Dürselen C. D., Kirschtel D., Pollingher U., & Zohary T. 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of phycology 35(2): 403–424. DOI: 10.1046/j.1529-8817.1999.3520403.x

Izaguirre, I., Bóveda M., & Tell G. 1986. Dinámica del fitoplancton y características limnológicas en dos estanques de la ciudad de Buenos Aires. Physis, 44(196), 25–38.

Jung, S. W., Kim B. H., Katano T., Kong D. S., & Han M. S. 2008. Pseudomonas fluorescens HYK0210-SK09 offers species-specific biological control of winter algal blooms caused by freshwater diatom Stephanodiscus hantzschii. Journal of applied microbiology, 105(1), 186–195. DOI:10.1111/j.1365-2672.2008.03733.x

Kociolek, J. P., Balasubramanian K., Blanco S., Coste M., Ector L., Liu Y., Kulikovskiy M., Lundholm N., Ludwig T., Potapova M., Rimet F., Sabbe K., Sala S., Sar E., Taylor J., Van de Vijver B., Wetzel C. E., Williams D.M., Witkowski A., &Witkowski J. 2018. DiatomBase. Retrieved from www.diatombase.org.

Kolmakov, V. I., Gaevskii N. A., Ivanova E. A., Dubovskaya O. P., Gribovskaya I. V., & Kravchuk E. S. 2002. Comparative analysis of ecophysiological characteristics of Stephanodiscus hantzschii Grun. in the periods of its bloom in recreational water bodies. Russian Journal of Ecology, 33(2), 97–103. DOI: 10.1023/A:1014448707663

Krammer, K., & Lange-Bertalot H. 1991. Bacillariophyceae 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In: Ettl, H., Gerloff, J., Heynig, H., Mollenhauer, D. (Eds.), Süwasserflora von Mitteleuropa 2/3. pp. 1–576. Gustav Fisher Verlag, Stuttgart, Germany.

Lin, X., Rioual, P., Peng, W., Yang, H., & Huang, X. 2018. Impact of recent climate change on Lake Kanas, Altai Mountains (NW China) inferred from diatom and geochemical evidence. Journal of Paleolimnology, 59(4), 461–477. DOI: 10.1007/s10933-018-0019-y

López-Cortés, D. J., Núñez-Vázquez E. J., Band-Schmidt C. J., Gárate-Lizárraga I., Hernández-Sandoval F., & Bustillos-Guzmán J. J. 2015. Mass fish die-off during a diatom bloom in the Bahía de La Paz, Gulf of California. Hidrobiológica 25, 39–48.

Mapa interactivo de Buenos Aires. 2018. Interactive map of Buenos Aires City. Retrieved from www.mapa.buenosaires.gob.ar.

Marker, A. F. 1980. Methanol and acetone as solvents for estimating chlorophyll a and phaeopigments by spectrophotometry. Archiv fur Hydrobiologie (Ergebn Limnol.), 14, 52–69.

Meijer, M. L., de Boois I., Scheffer M., Portielje R., & Hosper H. 1999. Biomanipulation in shallow lakes in The Netherlands: an evaluation of 18 case studies. In: Shallow Lakes’ 98. Springer, Dordrecht, 13–30. DOI: 10.1023/A:1017045518813.

Mirande, J. M., & Koerber S. 2015. Checklist of the freshwater fishes of Argentina (CLOFFAR). Ichthyological Contributions of Peces Criollos 36: 1–68.

Morales, E. A. 2002. Studies in selected fragilarioid diatoms of potential indicator value from Florida (USA) with notes on the genus Opephora PETIT (Bacillariophyceae). Limnologica 32 (2), 102–113. DOI: 10.1016/S0075-9511(02)80002-0

Nelson, J. S., Grande T. C., & Wilson M. V. 2016. Fishes of the world. 5th ed. Wiley. Acid-free paper. John Wiley y Sons, Inc. Hoboken, New Jersey: p. 752.

Nusch, E. A. 1980. Comparison of different methods for chlorophyll and phaeopigment determination. Archiv fur Hydrobiologie (Ergebn Limnol.), 14, 14–36.

Paerl, H. W., Hall N. S., & Calandrino E. S. 2011. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Science of The Total Environment, 409(10), 1739–1745. DOI:10.1016/j.scitotenv.2011.02.001

Rodríguez-Flórez, C. N., Vinocur A. & Izaguirre I. 2019. Dinámica del fitoplancton en tres lagos urbanos con diferentes estrategias de manejo: Análisis de floraciones estivales. Ecología Austral 29, 072–093. DOI: 10.25260/EA.19.29.1.0.743

SAyDS. 2014. Tercera Comunicación Nacional sobre Cambio Climático. “Cambio Climático en Argentina; Tendencias y Proyecciones” (Centro de Investigaciones del Mar y la Atmósfera). Buenos Aires, Argentina. p. 341. www.3cn.cima.fcen.uba.ar/3cn_informe.php

Smayda T. J. 2006. Harmful algal bloom communities in Scottish coastal waters: relationship to fish farming and regional comparisons- A review. Scottish Executive Environment Group Paper 2006/3. Scottish Executive, Scottish Environmental Protection Agency (SEPA). www.scotland.gov.uk/Publications/2006/02/03095327.

SMN. 2018. National Weather Service. Retrieved from www.smn.gob.ar.

Sun, J., & Liu D. 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research, 25(11), 1331–1346. DOI: 10.1093/plankt/fbg096

Tolotti, M., Corradini F., Boscaini A., Calliari D. 2007. Weather-driven ecology of planktonic diatoms in Lake Tovel (Trentino, Italy). Hydrobiologia 578 (1), 147–156. DOI: 10.1007/s10750-006-0441-4.

USF Water Institute. 2018. Water Institute of the University of South Florida, USA. Retrieved from www.wateratlas.usf.edu.

Utermöhl, M. 1958. ZurVervollkomnung der quantitativen Phytoplankton-Methodik. (For the perfection of quantitative phytoplankton methodology). Mitteilungen. Communications. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 9(1), 1–38. DOI: 10.1080/05384680.1958.11904091.

Van der Werff, A. 1955. A new method of concentrating and cleaning diatoms and other organisms. Verhandlungen der Internationalen Vereinigungfür Theoretische und Angewandte Limnologie 12 (1), 276–277. DOI: 10.1080/03680770.1950.11895297

Venrick, E. L., 1978. How many cells to count. In: Sournia, A. (Ed.), Phytoplankton Manual. pp. 167–180. UNESCO, Paris.

Waajen, G. W. A. M., Faassen E. J., & Lürling M. 2014. Eutrophic urban ponds suffer from cyanobacterial blooms: Dutch examples. Environmental Science and Pollution Research, 21(16), 9983–9994. DOI:10.1007/s11356-014-2948-y

Wang, P., Shen H., &Xie P. 2012. Can hydrodynamics change phosphorus strategies of diatoms? nutrient levels and diatom blooms in lotic and lentic ecosystems. Microbial Ecology, 63(2), 369–382. DOI: 10.1007/s00248-011-9917-5.

Wolch, J. R., Byrne J., & Newell J. P. 2014. Urban green space, public health, and environmental justice: The challenge of making cities “just green enough.” Landscape and Urban Planning, 125, 234–244. DOI:10.1016/j.landurbplan.2014.01.017.

Zhang, Y., Peng C., Wang J., Huang S., Hu Y., Zhang J., & Li D. 2018.b. Temperature and silicate are significant driving factors for the seasonal shift of dominant diatoms in a drinking water reservoir. Journal of Oceanology and Limnology, 37(2), 568–579. DOI: 10.1007/s00343-019-8040-1.

Zhang, Y., Peng C., Wang Z., Zhang J., Li L., Huang S., & Li D. 2018. The species-specific responses of freshwater diatoms to elevated temperatures are affected by interspecific interactions. Microorganisms 6 (3), 82. DOI:10.3390/microorganisms6030082

Downloads

Published

2020-12-14