Origin and Evolution of the W mineralization in the Intrusion-related Hydrothermal Deposits of the Cerro Áspero Mining District, Sierras Pampeanas, Argentina

Authors

DOI:

https://doi.org/10.11137/1982-3908_2021_44_35969

Keywords:

Wolframite, Intrusion-related deposits, Cerro Áspero

Abstract

The Cerro Áspero Mining District (CAMD) is located at the Sierras Pampeanas of central Argentina and hosts significant intrusion-related wolframite mineralization. The ore deposits are associated to hydrothermal quartz veins and breccias, hosted by granitoids and metamorphic rocks at the northern contact zone of the Devonian post-orogenic Cerro Áspero Batholith (CAB). The physico-chemical conditions of the different mineralization styles are yet not totally understood, and aiming to deliver a metallogenetic model, the petrography and composition of the main ore and gangue minerals were investigated, and fluid inclusion and stable isotope studies were performed in quartz, muscovite, wolframite, apatite, pyrite, molybdenite, chalcopyrite, and galena. The integrated results revealed that the CAMD ore deposits were generated within the cooling period of the Cerro Áspero Batholith, throughout three late to post-magmatic hydrothermal mineralizing stages. Based on fluid inclusion studies and stable isotope processed data, it was found that the fluids of the first two stages were probably derived from a magmatic source, whereas the third stage solutions would have been originated from meteoric waters. The temperature of the system at the beginning of the hydrothermal phase, was estimated at 384°C; thereafter, the calculated values suggest a decreasing thermal path. Chemical analyses of wolframite showed that the CAMD ore deposit’s evolution was signed by initial formation of ferberite, and subsequently evolved with an increasing H/F ratio that conduced to hübnerite precipitation in the final stage.

Author Biography

Sebastián González Chiozza, Universidade Federal do Ceará

Departamento de Geologia

References

Bodnar, R.J. 1993. Revised equation and table for determining the freezing point depression of H2O NaCl solutions. Geochimica et Cosmochimica Acta, 57: 683-684. https://www.sciencedirect.com/science/article/pii/001670379390378A

Bottinga, Y. & Javoy, M. 1973. Comments on oxygen isotope geothermometry. Earth Planetary Science Letters, 20(2): 250-265. https://www.sciencedirect.com/science/article/pii/0012821X73901659

Brodtkorb, M.K. 1999. El distrito wolframífero Cerro Áspero, Córdoba. In: ZAPPETTINI, E.O. (Ed.). Recursos Minerales de la República Argentina. Servicio Geológico Minero Argentino, Instituto de Geología y Recursos Minerales. Anales, 35: 581-583.

Burruss, R.C. 1981. Hydrocarbon fluid inclusions in studies of sedimentary diagenesis. In: HOLLISTER, L.S. & CRAWFORD, M.L. (Eds.). Short course in IF: applications to petrology. Mineralogical Association of Canada, 304 p.

Campbell, A.R. & Larson, P.B. 1998. Introduction to stable isotope applications in hydrothermal systems. In: RICHARDS, J.P. & LARSON, P.B. (Eds.). Techniques in hydrothermal ore deposits geology. Reviews in Economic Geology, 10: 173-193.

Claypool, G.E.; Holser, W.T.; Kaplan, I.R.; Sakai, H. & Zak, I. 1980. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chemical Geology, 28: 199-260. https://www.sciencedirect.com/science/article/pii/0009254180900479

Espeche, M.J. & Lira, L. 2019. El origen del wolframio en los depósitos de scheelita de las Sierras Pampeanas de Córdoba: ¿estratoligado o magmático? XIII Congreso de Mineralogía, Petrología Ígnea y Metamórfica, y Metalogénesis, Córdoba. Actas: 298-299.

González Chiozza, S. 2004. Geología y metalogenia del Distrito Minero Cerro Áspero, Sierras Pampeanas de Córdoba, Argentina. Universidad de Buenos Aires, PhD Thesis, 148p.

González Chiozza, S. & Mutti, D.I. 2002. Depósitos mesotermales y Zonación del Distrito Minero Cerro Áspero, Sierras Pampeanas de Córdoba. 15° Congreso Geológico Argentino, Calafate. Actas, 2: 294-499.

González Chiozza, S. & Mutti, D.I. 2008. Estimativa do tempo de esfriamento do Batolito Cerro Áspero (BCA) e sua relação cronológica com a formação dos jazimentos magmático-hidrotermais associados. 44º Congresso Brasileiro de Geologia, Curitiba. Atas: 876.

González Chiozza, S.; Wiechowski, A. & Brodtkorb, M. 2002. Determinaciones mineralógicas en la fase de sulfuros del Distrito Minero Cerro Áspero, Sierras Pampeanas de Córdoba. 6° Reunión de Mineralogía y Metalogenia, Buenos Aires. Actas: 169-172.

Michaud, J.A.S. & Pichavant, M. 2019. The H/F ratio as an indicator of contrasted wolframite deposition mechanisms. Ore Geology Reviews, 104: 266–272.

Mutti, D.I.; Tourn, S.M.; González Chiozza, S. & Herrmann, C.J. 2003 Importance of late Famatinian deformation in the exploration for wolfram deposits in Sierras de Córdoba, Argentina. In: ELIOPOULOS, D. (Ed.). Mineral Exploration and Sustainable Development. Balkema, Rotterdam, p. 795-798.

Mutti, D.I. & González Chiozza, S. 2005. Evolución petrotectónica del distrito minero Cerro Áspero y modelo de emplazamiento de los depósitos wolframíferos; Córdoba, Argentina. Revista de la Asociación Geológica Argentina, 60(1): 104-121. http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0004-48222005000100015&lng=es&nrm=iso&tlng=es

Mutti, D.I.; Tourn, S.; Caccaglio, O.; Herrmann, C.J.; Geuna, S.E.; Di Marco, A. & Gonzalez Chiozza, S. 2005. Evolución metalogenética de las Sierras Pampeanas de Córdoba y sur de Santiago del Estero: Ciclos famatiniano, gondwánico y ándico. Revista de la Asociación Geológica Argentina, 60(3): 467-485. http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0004-48222005000300004&lng=es&nrm=iso&tlng=es

Mutti, D.I.; Di Marco, A.; Geuna, S.A. & Caccaglio, O. 2007. Depósitos polimetálicos en el orógeno famatiniano de las Sierras Pampeanas de San Luis y Córdoba: fluidos, fuentes y modelo de emplazamiento. Revista de la Asociación Geológica Argentina, 62(1): 44-61. http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0004-48222007000100006&lng=es&nrm=iso&tlng=es

Ohmoto, H. & Rye, R.O. 1979. Isotopes of sulphur and carbon. In: H.L. BARNES (Ed). Geochemitry of hydrothermal ore deposits. Wiley and Sons, New York, p. 509-567.

Pinotti, L.; Coniglio, J.; Esparza, A.; D’Eramo, F. & Llambías, E. 2002. Nearly circular plutons emplaced by stoping at shallow crustal levels, Cerro Áspero batholith, Sierras Pampeanas de Córdoba, Argentina. Journal of South American Earth Sciences, 15: 251-265. 10.1016/S0895-9811(02)00033-0

Pinotti, L.; Tubía, J.M.; D’Eramo, F.; Vegas, N.; Sato, A.M.; Coniglio, J. & Aranguren, A. 2006. Structural interplay between plutons during the construction of a batholith (Cerro Aspero batholith, Sierras de Córdoba, Argentina). Journal of Structural Geology, 28: 834-849. https://doi.org/10.1016/j.jsg.2006.02.004

Ramos, V. 1999. Evolución tectónica de la Argentina. In: CAMINOS, R. (Ed.). Geología Argentina. Servicio Geológico Minero Argentino, Instituto de Geología y Recursos Minerales. Anales, 29: 715-759.

Rapela, C.W.; Pankhurst, R.J.; Casquet, C.; Baldo, E.; Saavedra, J.; Galindo, C. & Fanning, C.M. 1998. The Pampean Orogeny of the souhern proto-Andes: Cambrian continental collision in the Sierras de Córdoba. In: PANKHURST, R. J. & RAPELA, C. W. (Eds.). The Proto-Andean Margin of Gondwana. Geological Society of London, Special Publications, 142: 181-217.

Rapela, C.W. & Pankhurst, R.J. 2002. Eventos tecto-magmáticos del Paleozoico inferior en el margen proto-Atlántico del sur de Sudamérica. 15° Congreso Geológico Argentino, Calafate. Actas, 1: 24-29.

Roedder, E. 1984. Fluid Inclusions. Reviews in Mineralogy, Mineralogical Society of America, 12, 644 p.

Roedder, E. & Bodnar, R.J. 1980. Geologic Pressure Determinations from Fluid Inclusion Studies. Annual Review of Earth and Planetary Sciences, 8: 263-301. https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1146%2Fannurev.ea.08.050180.001403

Sheppard, S. 1986. Characterization and isotopic variations in natural waters. In: VALLEY, J.; TAYLOR JR., H. & O’NEILL, J. (Eds.). Stable isotopes in high temperature geological processes. Reviews in Mineralogy, Mineralogical Society of America, 16: 165-184.

Suzuoki, T. & Epstein, S. 1976. Hydrogen isotope fractionation between OH-bearing minerals and water. Geochimica et Cosmochimica Acta, 40: 1229-1240. https://www.sciencedirect.com/science/article/pii/0016703776901587

Zheng, Y.F. 1996. Oxygen isotope fractionations involving apatites: Application to paleotemperature determination. Chemical Geology, 127: 177-187. https://www.sciencedirect.com/science/article/pii/0009254195000887

Zhang, L.G.; Liu; J.X. & Chen, Z.S. 1989. Oxigen isotope fractionation in the quartz-water-salt system. Economic Geology, 84(6): 1643-1650. https://doi.org/10.2113/gsecongeo.84.6.1643

Zhang, L.G.; Liu, J.X.; Chen, Z.S. & Zhou, H.B. 1994. Experimental investigations of oxygen isotope fractionation in cassiterite and wolframite. Economic Geology, 89(1): 150-157. https://doi.org/10.2113/gsecongeo.89.1.150

Downloads

Published

2021-03-23

Issue

Section

Geology