Extração Automática de Lineamentos na Exploração de Água Subterrânea: Caso dos Aquíferos Metassedimentares da Chapada Diamantina Centro-Setentrional

Authors

DOI:

https://doi.org/10.11137/1982-3908_2021_44_39227

Keywords:

Extração automática de lineamentos, Chapada Diamantina Centro-Setentrional, Prospecção hidrogeológica

Abstract

Este artigo apresenta uma aplicação da técnica de extração automática de lineamentos nos estudos de águas subterrâneas. Seu objetivo é identificar feições estruturais, definir seu papel na hidrodinâmica dos aquíferos metassedimentares da Chapada Diamantina Centro-Setentrional e estabelecer uma relação entre os sistemas de fraturas e a prospecção hidrogeológica. A metodologia consiste em produzir um mapa de lineamentos obtidos através do processamento dos dados de modelo digital de elevação do SRTM, sobreposição de imagens sombreadas e produção de duas imagens de iluminação multidirecionais A e B (azimutes 0º, 45º, 90º, 135º e 180º, 225º, 270º, 315º respectivamente) utilizadas na extração automática das estruturas. Destas, a Imagem Multidirecional A apresentou uma menor variância nos dados, sendo utilizada nas interpretações hidrogeológicas a partir das orientações preferenciais dos lineamentos extraídos. A análise estatística em um conjunto com 2.370 lineamentos indica a predominância de três famílias: NNW-SSE (26,5%), NW-SE (23,0 %) e N-S (22,5%). Em geral, interpretou-se que o campo de tensão principal está associado aos lineamentos NNW-SSE, que correspondem às fraturas extensionais de partição (tipo T). As demais, tem relação com sistemas de pares conjugados de cisalhamento de NW-SE (antitético, tipo R’) e N-S (sintético, tipo R). Esse padrão se relaciona com a evolução tectono-estrutural rúptil e com a geometria das rochas em anticlinais e sinclinais com eixos concordantes com a orientação N-S. Assim, as maiores densidades e interseções das fraturas principais (T, R e R’) ocorrem nos locais de máxima curvatura dos anticlinais e sinclinais nas porções sudeste, nordeste e noroeste da área. Essas características implicam em uma maior favorabilidade para circulação e armazenamento de água subterrânea, com ocorrência de poços produtores com vazões entre 40,1 a 203,0 m3/h em oposição das demais regiões que são praticamente desprovidas de concentrações e interseções significativas de lineamentos.

References

Abdullah, A., Akhir, J.M. & Abdullah, I. 2009, ‘A Comparison of Landsat TM and SPOT Data for Lineament Mapping in Hulu Lepar Area,Pahang, Malaysia’, European Journal of Scientific Research, vol.34, no. 3, pp. 406-15.

Abdullah, A., Akhir, J.M. & Abdullah, I. 2010, ‘Automatic Mapping of Lineaments Using Shaded Relief Images Derived from Digital Elevation Model (DEMs) in the Maran-Sungai Lembing Area, Malaysia’, Electronic Journal of Geotechnical Engineering, vol. 15, pp. 949-57.

Adiat, K., Nawawi, M. & Abdullah, K. 2012, ‘Assessing the accuracy of GIS-based elementary multi criteria decision analysis as a spatial prediction tool. A case of predicting potential zones of suitable ground water resources’, J. Hydrology, vol. 440–1, pp.75–89. https://doi.org/10.1016/j.jhydrol.2012.03.028.

Akinluyi, F.O., Olorunfemi, M.O. & Bayowa, O.G. 2018, ‘Investigation of the influence of lineaments, lineament intersections and geology on groundwater yield in the basement complex terrain of Ondo State, Southwestern Nigeria’, Applied Water Science, vol. 8, no. 49, pp. 1-13. https://doi.org/10.1007/s13201-018-0686-x.

Alazzawi, A., Alsaadi, H., Shallal, A. & Albwi, S. 2015, ‘Edge Detection Application of (First and Second) Order Derivate Ative in Image Processing’, Diyala Journal of Engineering Sciences, vol. 8, no. 4, pp. 430-40.

Altinörs, A. & Önder, H. 2008, ‘A double-porosity model for a fractured aquifer with non-Darcian flow in fractures’, Hydrological Sciences–Journal, vol. 53, no. 4, pp. 868-82. https://doi.org/10.1623/hysj.53.4.868.

Amadi, A.N. & Olasehinde, P.I. 2010, ‘Application of remote sensing techniques in hydrogeological mapping of parts of Bosso area, Minna, north-Central Nigeria’, Int J Phys Sci., vol. 5, no. 9, pp. 1465–74.

Arlegui, L.E. & Soriano, M.A. 1998, ‘Characterizing lineaments from satellite images and field studies in the central Ebro basin (NE Spain)’, Int. J. Rem. Sens., vol. 19, pp. 3169-85. https://doi.org/10.1080/014311698214244.

Bai, M., Elsworth, D. & Roegiers, J.C. 1993, ‘Multiporosity/multipermeability approach to the simulation of naturally fractured reservoirs’, Water Resour. Res., vol. 29, no. 6, pp. 1621-33. https://doi.org/10.1029/92WR02746

Barreiro, H.S. 2018, ‘Hidrogeologia do Domínio Metassedimentar na Chapada Diamantina Centro-Setentrional: Sistemas de Fluxo e Métodos de Prospecção’. Trabalho Final de Graduação, Curso de Graduação em Geologia, Universidade Federal da Bahia.

Battilani, G.A., Gomes, N.S. & Guerra, W.J. 1997, ‘Evolução diagenética dos arenitos da Formação Morro do Chapéu, Grupo Chapada Diamantina, na região de Morro do Chapéu, Bahia’, Geonomos, vol. 4, no. 2, pp. 81–9. https://doi.org/10.18285/geonomos.v4i2.203

Canny, J.A 1987, ‘Computational approach to edge detection’, IEEE Trans. Pattern Anal. Mach. Intell, vol. 8, pp. 679–98. https://doi.org/10.1109/TPAMI.1986.4767851.

Conceição, R.A.C. & Silva, A.Q. 2013, ‘Extração automática de lineamentos utilizando imagens SRTM, Landsat ETM+ e ALOS PALSAR na região de Nobres, MT’, XVI Simpósio Brasileiro de Sensoriamento Remoto, pp. 3688-95.

Dasho, O.A., Ariyibi, E.A., Akinluyi, F.O., Awoyemi, M.O. & Adebayo, A.S. 2017, ‘Application of satellite remote sensing to groundwater potential modelling in Ejigbo area, Southwestern Nigeria’, Model Earth Syst Environ, vol. 3, no 2, pp. 615–33. https://doi.org/10.1007/s40808-017-0322-z.

Edet A.E., Okereke C.S., Teme S.C. & Esu E.O. 1998, ‘Application of remote-sensing data to groundwater exploration: a case study of the Cross River State, Southeastern Nigeria’, Hydrogeol J., vol. 6, pp. 394–404. https://doi.org/10.1007/s100400050162.

Figueiredo, F.T., Almeida, R.P., Tohver, E., Babinski, M., Liu, D. & Fanning, C.M. 2009, ‘Neoproterozoic glacial dynamics revealed by provenance of diamictites of the Bebedouro Formation, São Francisco Craton, Central Eastern Brazil’, Terra Nova, vol. 21, no. 5, pp. 375–85. https://doi.org/10.1111/j.1365-3121.2009.00893.x.

Guimarães, J.T. 1996, ‘A Formação Bebedouro no Estado da Bahia: Faciologia, estratigrafia e ambientes de sedimentação’, Dissertação de Mestrado, Universidade Federal da Bahia.

Han, L., Liu, Z., Ning, Y & Zhao, Z. 2018, ‘Extraction and analysis of geological lineaments combining a DEM and remote sensing images from the northern Baoji loess area’, Advances in Space Research Int., vol. 62, pp. 2480–93. https://doi.org/10.1016/j.asr.2018.07.030.

Hardcastle, K.C. 1995, ‘Photolineament factor: a new computer-aided method for remotely sensing the degree to which the bedrock is fractured’, Photogrammetric Eng Remote Sens., vol. 61, pp. 739–47. https://doi.org/10.1016/0148-9062(96)81851 -1.

Henriksen, H. & Braathen, A. 2005, ‘Effects of fracture lineaments and in situ rock stresses on groundwater flow in hard rocks: a case study from Sunnfjord, Western Norway’, Hydrogeol J., vol. 14, pp. 444–61. https://doi.org/10.1007/s1058 4-017-2001-5.

Hoffmann, J. & Sander, P. 2006, ‘Remote sensing and GIS in hydrogeology’, Hydrogeology Journal, vol. 15, no. 1 pp. 1-3. https://doi.org/10.1007/s10040-006-0140-2.

Jensen, J.R. 2009, Sensoriamento remoto do ambiente: Uma perspectiva em recursos terrestre, Editora Parentese, São José dos Campos, São Paulo.

Karfunkel, J. & Hoppe, A. 1988, ‘Late Proterozoic glaciation in central-eastern Brazil: synthesis and model’, Palaeogeogr. Palaeoclimatol. Palaeoecol., vol. 65, pp. 1–21. https://doi.org/10.1016/0031-0182(88)90108-3.

Karnieli, A., Meisels A., Fisher, L.& Arkin, Y. 1996, ‘Automatic extraction and evaluation of geological linear features from digital remote sensing data using a hough transform’, Photogrammetry Engineering & Remote Sensisng, vol. 62, no. 5, pp. 525-31.

Köppen, W. 1948, ‘Klassification der klimate nach temperatur, niederschlag und jahreslauf’, Petermanns Geographische Mitteilungen, vol. 64, pp. 193-203.

Liu, H. & Jezek, K. 2004, ‘Automated extraction of coastline from satellite imagery by integrating canny edge detection and locally adaptive thresholding methods’, Int. J. Remote Sens., vol. 25, pp. 937–58. https://doi.org/10.1080/0143116031000139890.

Lobatskaya, R.M. & Strelchenko, I.P. 2016, ‘GIS-based analysis of fault patterns in urban areas: a case study of Irkutsk city, Russia’, Geosci Front., vol. 7, pp. 285–97. https://doi.org/10.1016/j.gsf.2015.07.004.

Magalhães, A.J.C., Raja Gabaglia, G.P., Scherer, C.M.S., Bálico, M.B., Guadagnin, F., Bento Freire, E., Silva Born L.R. & Catuneanu, O. 2016, ‘Sequence hierarchy in a Mesoproterozoic interior sag basin: frombasin fill to reservoir scale, the Tombador Formation, Chapada Diamantina Basin, Brazil’, Basin Research, vol. 28, no. 3, pp. 393-432. https://doi.org/10.1111/bre.12117.

Mallast, U., Gloaguen, R., Geyer, S., Rodiger, T. & Siebert, C. 2011, ‘Derivation of groundwater flow-paths based on semi-automatic extraction of lineaments from remote sensing data’, Hydrol Earth Syst Sci, vol. 15, pp. 2665–78. https://doi.org/10.5194/hess-15-2665-2011.

Masoud, A. & Koike, K. 2006, ‘Tectonic architecture through Landsat-7 ETM +/SRTM DEM-derived lineaments and relationship to the hydrogeologic setting in Siwa region, NW Egypt’, J Afr Earth Sci, vol. 45, pp. 467–77. https://doi.org/10.1016/j.jafrearsci.2006.04.005.

Meijerink, A.M.J. 1996, ‘Remote sensing applications to hydrology: groundwater’, Hydrological Sciences Journal, vol. 41, no. 4, pp. 549-61. https://doi.org/10.1080/02626669609491525.

Mehdaoui, R. & Mili, E.M. 2019, ‘Combined use of remote sensing and GIS in the extraction of structural lineaments in the Cretaceous basin of Errachidia-Boudnib (south-east Morocco), hydrological implication’, International Journal of Engineering and Advanced Technology, vol. 8, no. 5, pp. 216-20.

Misi, A. & Veizer, J. 1998, ‘Neoproterozoic sequences of the Una Group, Irecê Basin, Brazil: chemostratigraphy, age and correlations’, Precambrian Research, vol. 89, pp. 87-100. https://doi.org/10.1016/S0301-9268(97)00073-9.

Mogaji, K.A., Aboyeji, O.S. & Omosuyi, G.O. 2011, ‘Mapping of lineaments for groundwater targeting in the basement complex region of Ondo State, Nigeria, using remote sensing and geographic information system (GIS) techniques’, Int. J. Water. Resour. Environ Eng, vol. 3, no. 7, pp. 150–60.

Morelli, M. & Piana, F. 2006, ‘Comparison between remotely sensed lineaments and geological structures in intensively cultivated hills (Monferrato and Langhe domains, NW Italy)’, Int. J. Rem. Sens., vol. 27, no. 20, pp. 4471-93. https://doi.org/10.1080/01431160600784200.

Muhammad, M.M. & Awdal, A.H. 2012, ‘Automatic Mapping of Lineaments Using Shaded Relief Images Derived from Digital Elevation Model (DEM) in Erbil-Kurdistan, Northeast Iraq’, Advances in Natural and Applied Sciences, vol. 6, no. 2, pp. 38-146.

Odeh, T., Salameh, E., Schirmer, M. & Strauch, G. 2009, ‘Structural control of groundwater flow regimes and groundwater chemistry along the lower reaches of the Zerka River, West Jordan, using remote sensing, GIS, and field methods’, Environ Geol., vol. 58, no. 8, pp. 1797-810.

Otsu, N. 1979, ‘A threshold selection method from gray-level histograms’, IEEE Trans. Syst. Man Cybern, vol. 9, no. 1, pp. 62–6. https://doi.org/10.1109/TSMC.1979.4310076.

Paravolidakis, V., Ragia, L., Moirogiorgou, K. & Zervakis, M.E. 2018, ‘Automatic Coastline Extraction Using Edge Detection and Optimization Procedures’, Geosciences, vol. 8, no. 407, pp. 1-19. https://doi.org/10.3390/geosciences8110407.

PCI Geomatica. Manual do Software – Algoritimo LINE. 2012, acesso em 11 dezembro 2019, < http://www.pcigeomatics.com/geomatica-help/references/pciFunction_r/python/P_line.html>.

Pedreira, A.J. 1997, ‘Sistemas deposicionais da Chapada Diamantina Centro-Oriental, Bahia’, Revista Brasileira de Geociências, vol. 27, no. 3, pp. 229-40.

Perona, P. & Malik, J. 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell., vol. 12, pp. 629–39. https://doi.org/10.1109/34.56205.

Qari, M.H.T., Madani, A.A, Matsah, M.I.M & Hamimi, Z. 2008, ‘Utilization of Aster and Landsat Data in Geologic Mapping of basement rocks of Arafat Area, Saudi Arabia’, The Arabian Journal for Science and Engineering, vol. 33, no. 1, pp. 99-116.

Rocha, A.J.D. & Costa, I.V.G. 1995, ‘Município de Morro do Chapéu (BA): Informações básicas para o planejamento e administração do meio físico’, Projeto Mapas Municipais, Salvador, CPRM.

Rocha, A.J.D., 2003, ‘Geologia (Folha Morro do Chapéu)’, Programa Levantamentos Geológicos Básico do Brasil - Morro do Chapéu (Folha SC.YC-V) - Estado da Bahia – escala 1:100.000, Brasília, CPRM.

Schobbenhaus, C. 1996, ‘As tafrogêneses superpostas Espinhaço e Santo Onofre, estado da

Bahia: Revisão e novas propostas’, Brazilian Journal of Geology, vol. 26, pp. 265–76.

Schwengerdt, R.A. 1980, ‘Reconstruction of Multispatial, MuItispectraI Image Data Using Spatial Frequency Content’, Photogrammetric Engineering and Remote Sensing, vol. 46, no. 10, pp. 1325-34.

Sial, A.N., Gaucher, C., Misi, A., Boggiani, P.C., Alvarenga, C.J.S., Ferreira, V.P., Pimentel, M.M., Pedreira, J.A., Warren, L.V., Fernández-Ramírez, R., Geraldes, M., Pereira, N.S., Chiglino, L. & Cezario W.S. 2016, ‘Correlations of some Neoproterozoic carbonate-dominated successions in South America based on high-resolution chemostratigraphy’, Brazilian Journal of Geology, vol. 46, no. 3, pp. 439-88. https://doi.org/10.1590/2317-4889201620160079.

Souza, J.D., Melo, R.C. & Kosin, M. 2003 ‘Mapa geológico do estado da Bahia’. Escala 1:1.000.000.

Souza, E.G., Scherer, C.M.S., Reis, A.D., Bállico, M.B., Ferronatto, J.P.F., Bofill, L.M. & Kifumbi, C. 2019, ‘Sequence stratigraphy of the mixed wave-tidal-dominated Mesoproterozoic sedimentary succession in Chapada Diamantina Basin, Espinhaço supergroup– Ne/Brazil’, Precambrian Research, vol. 327, pp.103–20. https://doi.org/10.1016/j.precamres.2019.03.007.

Vasuki, Y., Holden, E., Kovesi, P. & Micklethwaite, S. 2014, ‘Semi-automatic mapping of geological structures using UAV-based photogrammetric data: an image’, Analysis Approach, vol. 69, pp. 22-32. https://doi.org/10.1016/j.cageo.2014.04.012.

Vaz, D.A., Achille, G.D., Barata, M.T. & Alves, E.I. 2012, ‘Tectonic lineament mapping of the Thaumasia Plateau, Mars: comparing results from photointerpretation and a semi-automatic approach’, Comput Geosci, vol. 48, pp. 162–72. https://doi.org/10.1016/j.cageo.2012.05.008

Vieira, M.B. 1998, ‘Vetorização e Análise de Tendência de Cartas de Lineamentos Geológicos’, Dissertação de Mestrado, Universidade Federal de Minas Gerais.

Yin, Z.Y. & Brook, G.A. 1992, ‘The topographic approach to locating high yield wells in crystalline rocks; does it work?’, Ground Water, vol. 30, no. 1, pp. 96-102.

Zhang, T., Yang, X., Hu, S. & Su, F. 2013, ‘Extraction of Coastline in Aquaculture Coast from Multispectral Remote Sensing Images: Object-Based Region Growing Integrating Edge Detection’, Remote Sens., vol. 5, pp. 4470–87. https://doi.org/10.3390/rs5094470.

Published

2021-10-18

Issue

Section

Geology