LED Light Integrated Reactors: Study of the Methylene Blue Chemical Oxidation Process
DOI:
https://doi.org/10.55747/bjedis.v1i1.48413Keywords:
Advanced Oxidative Process, Visible Light, LED, Persulfate, Methylene Blue, Continuous Process, Experimental designAbstract
The contamination of water by organic dyes, such as methylene blue, is a risk factor for the environment, since all aquatic fauna and flora are immensely affected due to the reduction of the amount of dissolved oxygen and the passage of light, affecting the photosynthesis. The main source of contamination comes from the textile industry, so it is necessary to study efficient techniques for treating effluent without the cogeneration impact. In the present work, a study was developed to evaluate the best combination of factors of a batch treatment to be applied in a continuous treatment system. The removal of methylene blue by chemical oxidation was evaluated using sodium persulfate as an oxidizing agent. A complete experimental design 23 was devised to evaluate the effects of the activation of the oxidizing agent by iron sulfate (II) and visible light (LED), these being the factors. After this batch step, the tests that were efficient in degrading the contaminant were carried out in the continuous reactor. The degradation results showed that, in batch, the oxidation with activation of sodium persulfate by iron sulfate (II) is more efficient, removing 91.2% of the dye in 20 minutes. In the continuous reactor, activation with a visible light source showed greater conversion due to its greater contact surface with water contaminated with dye, removing 59.2% over 15 meters from the reactor and residence time of 109 seconds.
Downloads
Published
Issue
Section
License
AUTHORS DECLARATIONS AND COPYRIGHT TRANSFER LICENSE
We at this moment declare that the present paper is our original work and has not been previously considered, either in whole or in part, for publication elsewhere. Besides, we warrant the authors will not submit this paper for publication in any other journal. We also guarantee that this article is free of plagiarism and that any accusation of plagiarism will be the authors' sole responsibility. The undersigned transfer all copyrights to the present paper (including without limitation the right to publish the work in any and all forms) to BJEDIS, understanding that neglecting this agreement will submit the violator to undertake the legal actions provided in the Law on Copyright and Neighboring Rights (No. 9610 of February 19, 1998). Also, we, the authors, declare no conflict of interest. Finally, all funders were cited in the acknowledgments section.