COMPETIÇÃO INTERESPECÍFICA NÃO É UM PROCESSO ESTRUTURADOR IMPORTANTE EM UMA COMUNIDADE ARBÓREA TROPICAL

Authors

  • Kelly Fernandes de Oliveira Ribeiro Universidade Estadual de Campinas - UNICAMP
  • Valéria Forni Martins Universidade Federal de São Carlos - UFSCar campus Araras
  • Maurício Bonesso Sampaio Universidade Federal de Alfenas - UNIFAL
  • Flavio Antonio Maës dos Santos Universidade Estadual de Campinas - UNICAMP

DOI:

https://doi.org/10.4257/oeco.2018.2204.10

Keywords:

mark correlation function, Neutral Theory, pair correlation function, phylogeny, Submontane Atlantic Rainforest

Abstract

A competição interespecífica é um dos processos ecológicos mais importantes para a coexistência de espécies. Em comunidades arbóreas, a morte de indivíduos da espécie competitivamente mais fraca leva à relação espacial de dissociação entre populações de espécies competidoras. Além disso, pode haver redução no crescimento das plantas nas proximidades de competidores mais fortes. Normalmente, os efeitos da competição são mais intensos entre espécies filogeneticamente mais próximas devido à sua similaridade funcional. Para testar se a competição entre espécies arbóreas é um importante processo em uma área de Floresta Ombrófila Densa Submontana no sudeste do Brasil, utilizamos análises espaciais para determinar a relação espacial entre populações, a influência da proximidade de heteroespecíficos sobre o tamanho dos indivíduos de uma determinada espécie, a diferença entre a distância filogenética de espécies com populações com diferentes relações espaciais, e a relação entre distância filogenética e tamanho de heteroespecíficos em função da distância espacial entre eles. Poucos pares de espécies apresentaram populações dissociadas. Não encontramos redução no tamanho dos indivíduos de uma espécie em função da distância de heteroespecíficos, diferença entre a distância filogenética de espécies com populações com diferentes relações espaciais, e relação entre distância filogenética e redução no tamanho dos indivíduos em função da distância de competidores. Assim, não há evidências de que a competição interespecífica seja importante na estruturação da comunidade estudada. Isso difere dos resultados encontrados em outras florestas tropicais e aponta que outros processos, como competição intraespecífica, competição difusa e processos neutros, sejam mais importantes na estruturação da comunidade.

 

INTERSPECIFIC COMPETITION IS NOT AN IMPORTANT STRUCTURING PROCESS IN A TROPICAL TREE COMMUNITY. Interspecific competition is one of the most important ecological processes maintaining species coexistence. In tree communities, the death of individuals of competitively weaker species results in the spatial relationship of dissociation between populations of competing species. Additionally, there may be a decrease in growth of plants located near strong competitors. Usually, the effects of interspecific competition are more intense in phylogenetically close species due to their functional similarity. To test whether competition among tree species is an important ecological process in an area of Submontane Atlantic Rainforest in SE Brazil, we used spatial analysis to determine the spatial relationship between populations, the influence of the proximity of heterospecifics on the size of individuals of a given species, the difference among the phylogenetic distance of species with populations with different spatial relationships, and the relationship between phylogenetic distance and the size of heterospecifics as a function of the spatial distance between them. Few pairs of species showed dissociated populations. We did not find reduced size of individuals located near heterospecifics, difference among the phylogenetic distance of species with populations with different spatial relationships, and relationship between phylogenetic distance and the size of individuals as a function of the distance from competitors. Therefore, there is no evidence that interspecific competition is important in structuring the community studied. This differs from results found in other tropical forests and suggests that other processes, such as intraspecific competition, diffuse competition and neutral processes, are more important in structuring the community.

Author Biographies

Kelly Fernandes de Oliveira Ribeiro, Universidade Estadual de Campinas - UNICAMP

Programa de Pós-gradução em Ecologia, Instituto de Biologia

Valéria Forni Martins, Universidade Federal de São Carlos - UFSCar campus Araras

Departamento de Ciências da Natureza, Matemática e Educação, Centro de Ciências Agrárias

Maurício Bonesso Sampaio, Universidade Federal de Alfenas - UNIFAL

Instituto de Ciências da Natureza

Flavio Antonio Maës dos Santos, Universidade Estadual de Campinas - UNICAMP

Departamento de Biologia Vegetal, Instituto de Biologia

References

Alves, L. F., Vieira, S. A., Scaranello, M. A., Camargo, P. B., Santos, F. A. M., Joly, C. A., & Martinelli, L. A. 2010. Forest structure and live aboveground biomass variation along an elevational gradient of tropical Atlantic moist forest (Brazil). Forest Ecology and Management, 26(5), 679–691. DOI: 10.1016/j.foreco.2010.05.023

Baraloto, C., Hardy, O. J., Paine, C. E. T., Dexter, K. G., Cruaud, C., Dunning, L. T., Gonzalez, M. A., Molino, J. F., Sabatier, D., Savolainen, V., & Chave, J. 2012. Using functional traits and phylogenetic trees to examine the assembly of tropical tree communities. Journal of Ecology, 100, 690–701. DOI: 10.1111/j.1365-2745.2012.01966.x

Bates, D., Maechler, M., Bolker, B., & Walker, S. 2015. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1), 1–48. DOI: 10.18637/jss.v067.i01

Bolker, B., & R Development Core Team (2017). bbmle: Tools for General Maximum Likelihood Estimation. R package version 1.0.19. https://CRAN.R-project.org/package=bbmle

Burnham, K. P., & Anderson, D. R. 2001. Kullback-Leibler information as a basis for strong inference in ecological studies. Wildlife Research, 28, 111–119. DOI: 10.1071/WR99107

Burns, J. H., & Strauss, S. Y. 2011. More closely related species are more ecologically similar in an experimental test. Proceedings of the National Academy of Sciences, 108(13), 5302–5307. DOI: 10.1073/pnas.1013003108

Chazdon, R. L., Careaga, S., Webb, C., & Vargas, O. 2003. Community and phylogenetic structure of reproductive traits of woody species in wet tropical forests. Ecological Monographs, 73(3), 331–348. DOI: 10.1890/02-4037

Connell, J. H. 1971. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In: P. J. den Boer & G. Gradwell (Eds.), Dynamics of Numbers in Populations. pp. 298–312. Wageningen: Center for Agricultural Publication and Documentation.

Connell, J. H. 1980. Diversity and the coevolution of competitors, or the ghost of competition past. Oikos, 35, 131–138. DOI: 10.2307/3544421

Coomes, D. A., & Allen, R. B. 2007. Effects of size, competition and altitude on tree growth. Journal of Ecology, 95, 1084–1097. DOI: 10.1111/j.1365-2745.2007.01280.x

Crawley, M. J. 2007. The R Book. Chichester: John Wiley & Sons: p. 942.

EMBRAPA. 2003. Banco de dados climáticos do Brasil. Retirado em 13 junho, 2017 de http://www.bdclima.cnpm.embrapa.br/

Fedriani, J. M., Wiegand, T., Calvo, G., Suárez-Esteban, A., Jácome, M., Zywiec, M., & Delibes, M. 2015. Unravelling conflicting density- and distance-dependent effects on plant reproduction using a spatially explicit approach. Journal of Ecology, 103, 1344–1353. DOI: 10.1111/1365-2745.12454

Fedriani, J. M., Wiegand, T., & Delibes, M. 2010. Spatial pattern of adult trees and the mammal-generated seed rain in the Iberian pear. Ecography, 33, 545–555. DOI: 10.1111/j.1600-0587.2009.06052.x

Getzin, S., Wiegand, K., Schumacher, J., & Gougeon, F. A. 2008. Scale-dependent competition at the stand level assessed from crown areas. Forest Ecology and Management, 255, 2478–2485. DOI: 10.1016/j.foreco.2008.01.007

Gotelli, N. J., & McCabe, D. J. 2002. Species co-occurrence: A meta-analysis of J. M. Diamond’s assembly rules model. Ecology, 83(8), 2091–2096. DOI: 10.2307/3072040

Hubbell, S. P. 2001. The unified neutral theory of biodiversity and biogeography. New Jersey: Princeton University Press: p. 392.

Hubbell, S. P. 2005. Neutral theory in community ecology and the hypothesis of functional equivalence. Functional Ecology, 19, 166–172. DOI: 10.1111/j.0269-8463.2005.00965.x

Hubbell, S. P., Ahumada, J. A., Condit, R., & Foster, R. B. 2001. Local neighborhood effects on long-term survival of individual trees in a neotropical forest. Ecological Research, 16, 859–875. DOI: 10.1046/j.1440-1703.2001.00445.x

Hurtt, G. C., & Pacala, S. W. 1995. The consequences of recruitment limitation: reconciling chance, history and competitive differences between plants. Journal of Theoretical Biology, 176, 1–12. DOI: 10.1006/jtbi.1995.0170

Hutchinson, G. E. 1957. Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22, 415–427. DOI: 10.1101/SQB.1957.022.01.039

Illian, J., Penttinen, A., Stoyan, H., & Stoyan, D. 2008. Statistical Analysis and Modelling of Spatial Point Patterns. Chichester: Wiley: p. 560.

Janzen, D. H. 1970. Herbivores and the number of tree species in tropical forests. The American Naturalist, 104(904), 501–528.

Joly, C. A., Assis, M. A., Bernacci, L. C., Tamashiro, J. Y., Campos, M. C. R., Gomes, J. A. M. A., Lacerda, M. S., Santos, F. A. M., Pedroni, F., Pereira, L. S., Padgurschi, M. C. G., Prata, E. M. B., Ramos, E., Torres, R. B., Rochelle, A., Martins, F. R., Alvez, L. F., Vieira, S. A., Martinelli, L. A., Camargo, P. B., Aidar, M. P. M., Eisenlohr, P. V., Simões, E., Villani, J. P., & Belinello, R. 2012. Florística e fitossociologia em parcelas permanentes da Mata Atlântica do sudeste do Brasil ao longo de um gradiente altitudinal. Biota Neotropica, 12(1), 123–145. DOI: 10.1590/S1676-06032012000100012

Judd, W. S., Campbell, C. S., Kellogg, E. A., Stevens, P. F., & Donoghue, M. J. 2009. Sistemática Vegetal: um enfoque filogenético. Porto Alegre: Artmed: p. 418.

Kraft, N. J. B., & Ackerly, D. D. 2010. Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecological Monographs, 80(3), 401–422. DOI: 10.1890/09-1672.1

Lan, G., Getzin, S., Wiegand, T., Hu, Y., Xie, G., Zhu, H., & Cao, M. 2012. Spatial distribution and interspecific associations of tree species in a tropical seasonal rain forest of China. Plos One, 7(9), e46074. DOI: 10.1371/journal.pone.0046074

Lebrija-Trejos, E., Wright, S. J., Hernández, A., & Reich, P. B. 2014. Does relatedness matter? Phylogenetic density-dependent survival of seedlings in a tropical forest. Ecology, 95(4), 940–951. DOI: 10.1890/13-0623.1

Ledo, A. 2015. Nature and age of neighbours matter: interspecific associations among tree species exist and vary across life stages in Tropical forests. Plos One, 10(11), e0141387. DOI: 10.1371/journal.pone.0141387

Leitold, V. 2014. Airborne lidar-based estimates of tropical forest structure and ground topography in a mountainous area of the Brazilian Atlantic forest. Tese de mestrado, Instituto Nacional de Pesquisas Espaciais. p. 102.

Lin, L., Comita, L. S., Zheng, Z., & Cao, M. 2012. Seasonal differentiation in density-dependent seedling survival in a tropical rain forest. Journal of Ecology, 100, 905–914. DOI: 10.1111/j.1365-2745.2012.01964.x

Losos, J. B. 2008. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters, 11, 995–1003. DOI: 10.1111/j.1461-0248.2008.01229.x

MacArthur, R., & Levins, R. 1967. The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist, 101(921), 377–385. DOI: 10.1086/282505

Magallón, S., Gómez-Acevedo, S., Sánchez-Reyes, L. L., & Hernández-Hernández, T. 2015. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. New Phytologist, 207(2), 437–453. DOI: 10.1111/nph.13264

Martins, S. C., Sousa-Neto, E., Piccolo, M. D. C., Almeida, D. Q. A., Camargo, P. B., Carmo, J. B., Porder, S., Lins, S. R. M., & Martinelli, L. A. 2015. Soil texture and chemical characteristics along an elevation range in the coastal Atlantic Forest of Southeast Brazil. Geoderma Regional, 5, 106–116. DOI: 10.1016/j.geodrs.2015.04.005

Martins, V. F., Seger, G. D. S., Wiegand, T. & Santos, F. A. M. 2018. Phylogeny contributes more than site characteristics and traits to the spatial distribution pattern of tropical tree populations. Oikos, no prelo. DOI:10.1111/oik.05142

Mayfield, M. M., & Levine, J. M. 2010. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters, 13, 1085–1093. DOI: 10.1111/j.1461-0248.2010.01509.x

McGill, B. J. 2010. Towards a unification of unified theories of biodiversity. Ecology Letters, 13(5), 627–642. DOI: 10.1111/j.1461-0248.2010.01449.x

Nanami, S., Kawaguchi, H., & Yamakura, T. 2011. Spatial pattern formation and relative importance of intra- and interspecific competition in codominant tree species, Podocarpus nagi and Neolitsea aciculata. Ecological Research, 26, 37–46. DOI: 10.1007/s11284-010-0750-y

Nguyen, H. H., Uria-Diez, J., & Wiegand, K. 2016. Spatial distribution and association patterns in a tropical evergreen broad-leaved forest of north-central Vietnam. Journal of Vegetation Science, 27, 318–327. DOI: 10.1111/jvs.12361

Pacala, S. W., & Silander, J. A. 1985. Neighborhood models of plant population dynamics. I. Single-species models of annuals. The American Naturalist, 125(3), 385–411. DOI: 10.1016/0040-5809(87)90012-8

Paine, C. E. T., Norden, N., Chave, J., Forget, P. M., Fortunel, C., Dexter, K. G., & Baraloto, C. 2012. Phylogenetic density dependence and environmental filtering predict seedling mortality in a tropical forest. Ecology Letters, 15, 34–41. DOI: 10.1111/j.1461-0248.2011.01705.x

Punchi-Manage, R., Wiegand, T., Wiegand, K., Getzin, S., Huth, A., Gunatilleke, C. V. S., & Gunatilleke, I. A. U. N. 2015. Neighborhood diversity of large trees shows independent species patterns in a mixed dipterocarp forest in Sri Lanka. Ecology, 96(7), 1823–1834. DOI: 10.1890/14-1477.1

R Core Team 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Raven, P. H., & Axelrod, D. I. 1974. Angiosperm Biogeography and Past Continental Movements. Annals of the Missouri Botanical Garden, 61(3), 539–673. DOI: 10.2307/2395021

Shi, H., & Zhang, L. 2003. Local Analysis of Tree Competition and Growth. Forest Science, 49(6), 938–955. DOI: 10.1093/forestscience/49.6.938

Stoyan, D., & Stoyan, H. 1994. Fractals, Random Shapes and Point Fields. Methods of Geometrical Statistics. Chichester: Wiley: p. 389.

Swenson, N. G., & Enquist, B. J. 2009. Opposing assembly mechanisms in a Neotropical dry forest: Implications for phylogenetic and functional community ecology. Ecology, 90(8), 2161–2170. DOI: 10.1890/08-1025.1

Uriarte, M., Condit, R., Canham, C. D., & Hubbell, S. P. 2004. A spatially explicit model of sapling growth in a tropical forest: does the identity of neighbours matter? Journal of Ecology, 92(2), 348–360. DOI: 10.1111/j.0022-0477.2004.00867.x

Velázquez, E., Paine, C. E. T., May, F., & Wiegand, T. 2015. Linking trait similarity to interspecific spatial associations in a moist tropical forest. Journal of Vegetation Science, 26(6), 1068–1079. DOI: 10.1111/jvs.12313

Wang, X., Wiegand, T., Kraft, N. J. B., Swenson, N. G., Davies, S. J., Hao, Z., Howe, R., Lin, Y., Ma, K., Mi, X., Su, S. H., Sun, I. F., & Wolf, A. 2016. Stochastic dilution effects weaken deterministic effects of niche-based processes in species rich forests. Ecology, 97(2), 347–360. DOI: 10.1890/14-2357.1

Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A., & Wright, I. J. 2002. Plant Ecological Strategies: Some Leading Dimensions of Variation Between Species. Annual Review of Ecology and Systematics, 33, 125–159. DOI: 10.1146/annurev.ecolsys.33.010802.150452

Wiegand, T., Grabarnik, P., & Stoyan, D. 2016. Envelope tests for spatial point patterns with and without simulation. Ecosphere, 7(6), e01365. DOI: 10.1002/ecs2.1365

Wiegand, T., Gunatilleke, S., Gunatilleke, N., & Okuda, T. 2007. Analyzing the spatial structure of a Sri Lankan tree species with multiple scales of clustering. Ecology, 88(12), 3088–3102. DOI: 10.1890/06-1350.1

Wiegand, T., Huth, A., Getzin, S., Wang, X., Hao, Z., Gunatilleke, C. V. S., & Gunatilleke, I. A. U. N. 2012. Testing the independent species’ arrangement assertion made by theories of stochastic geometry of biodiversity. Proceedings of the Royal Society B: Biological Sciences, 279(1741), 3312–3320. DOI: 10.1098/rspb.2012.0376

Wiegand, T., & Moloney, K. A. 2004. Rings, circles, and null-models for point pattern analysis in ecology. Oikos, 104, 209–229. DOI: 10.1111/j.0030-1299.2004.12497.x

Wiegand, T., & Moloney, K. A. 2014. Handbook of Spatial Point Pattern Analysis in Ecology. Boca Raton: CRC Press: p. 510.

Wiens, J. J., Ackerly, D. D., Allen, A. P., Anacker, B. L., Buckley, L. B., Cornell, H. V., Damschen, E. I., Davies, T. J., Grytnes, J-A., Harrison, S. P., Hawkins, B. A., Holt, R. D., McCain, C. M., & Stephens, P. R. 2010. Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters, 13, 1310–1324. DOI: 10.1111/j.1461-0248.2010.01515.x

Wright, S. J. 2002. Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia, 130, 1–14. DOI: 10.1007/s004420100809

Zar, J. H. 2010. Bioestatistical Analysis. New Jersey: Pearson: p. 944.

Zhu, Y., Comita, L. S., Hubbell, S. P., & Ma, K. 2015. Conspecific and phylogenetic density-dependent survival differs across life stages in a tropical forest. Journal of Ecology, 103, 957–966. DOI: 10.1111/1365-2745.12414

Published

2018-12-18