COMO AS ABELHAS PERCEBEM AS FLORES E POR QUE ISTO É IMPORTANTE?

Authors

  • Lílian Rodrigues Ferreira Melo Universidade Federal de Uberlândia
  • Bárbara Matos da Cunha Guimarães Universidade Federal de Uberlândia
  • Gudryan Jackson Barônio Universidade Federal de Uberlândia
  • Larissa Chagas de Oliveira Universidade Federal de Uberlândia
  • Renan Kobal de Oliveira Alves Cardoso Universidade de São Paulo
  • Thayane Nogueira Araújo Universidade Federal de Uberlândia
  • Francismeire Jane Telles Universidade Federal de Uberlândia

DOI:

https://doi.org/10.4257/oeco.2018.2204.03

Keywords:

cognition, floral attractants, plant-pollinator interaction, pollinators, sensory systems

Abstract

A cognição animal pode ser definida como a capacidade apresentada por um organismo em adquirir, reter e posteriormente utilizar a informação sensorial na tomada de decisões, em diferentes contextos. A compreensão de como os sinais emitidos no ambiente interagem com os canais sensoriais dos animais capazes de percebê-los ajuda a desvendar o significado ecológico e evolutivo das interações entre os organismos. No contexto da polinização, a atração de visitantes à flor é atribuída a uma grande diversidade de sinais, principalmente os visuais e olfativos. Além de atuarem como atrativos, esses sinais também podem exibir funções relacionadas à comunicação da presença/ausência de recursos. Não obstante, outras modalidades sensoriais menos conhecidas, também desempenham papel relevante na interação entre flores e visitantes. A ideia central do presente trabalho é expor, através de exemplos relevantes da literatura, os principais sinais emitidos pelas flores e percebidos pelas abelhas, seja através do uso de uma única modalidade sensorial ou através de múltiplas modalidades. Independente da modalidade sensorial e da complexidade dos estímulos, estudos sobre as interações entre plantas e seus visitantes florais ganham maior entendimento das relações se consideramos os diferentes aspectos relacionados com o sinal que está sendo emitido, e a direcionalidade do mesmo, ou simplesmente a capacidade ou não de ser percebido. Quantificar os processos, suas causas e consequências reforça o entendimento de padrões evolutivos, ecológicos e comportamentais entre os organismos interagentes, tanto em relações puramente mutualistas quanto em relações antagonistas.

 

 

HOW DO BEES PERCEIVE FLOWERS AND WHY IT IS IMPORTANT? Animal cognition can be defined as the ability of an organism to acquire, retain and subsequently use the sensory information during decision-making processes in different contexts. The understanding of how the signals emitted in the environment interact with the sensory system of animals capable of perceiving them helps to unravel the ecological and evolutionary significance of the interactions between organisms. In the context of pollination, the attraction of visitors to the flower is attributed to a great diversity of signals, especially visuals and olfactory. In addition to acting as attractants, they can also exhibit functions related to the communication of the presence/absence of resources. Nevertheless, other sensory modalities, also play a relevant role on the interaction between flowers and visitors. The central idea of the present study is to present, through relevant examples from the literature, the main signals emitted by the flowers and perceived by the bees, either by a single sensory modality or through multiple modalities. Regardless of the sensory modality and the complexity of the stimuli, studies of the interactions between plants and their floral visitors can be better understood and detailed if we consider the different aspects related to the signal being emitted and the directionality of the same, or simply the capacity or not to be perceived. Quantifying processes, their causes and consequences reinforce the understanding of evolutionary, ecological and behavioral patterns among interacting organisms, both in mutualistic and antagonistic relationships.

References

Adler, L. S. 2000. The ecological significance of toxic nectar. Oikos, 91(3), 409–420. DOI: 10.1034/j.1600-0706.2000.910301.x

Agostini, K., Sazima, M., & Galetto, L. 2011. Nectar production dynamics and sugar composition in two Mucuna species (Leguminosae, Faboideae) with different specialized pollinators. Naturwissenschaften, 98(11), 933–942. DOI: 10.1007/s00114-011-0844-6

Amaya-Márquez, M. 2009. Floral constancy in bees: a revision of theories and a comparison with other pollinators. Revista Colombiana de Entomologia, 35(2), 206–216.

Andersson, S. 1988. Size-dependent pollination efficiency in Anchusa officinalis (Boraginaceae): causes and consequences. Oecologia, 76, 125–130.

Araújo, A. C., & Sazima, M. 2003. The assemblage of flowers visited by hummingbirds in the “capões” of Southern Pantanal, Mato Grosso do Sul, Brazil. Flora-Morphology, Distribution, Functional Ecology of Plants, 198(6), 427–435.

Armbruster, W. S., Antonsen, L., & Pelabon, C. 2005. Phenotypic selection on Delachampia blossoms: honest signaling affects pollination success. Ecology, 86, 3323–3333. DOI: 10.1890/04-1873

Assunção, M. A., Torezan-Silingardi, H. M., & Del-Claro, K. 2014. Do ant visitors to extrafloral nectaries of plants repel pollinators and cause an indirect cost of mutualism? Flora: Morphology, Distribution, Functional Ecology of Plants, 209(5–6), 244–249. DOI: 10.1016/j.flora.2014.03.003

Ayasse, M., Stökl, J., & Francke, W. 2011. Chemical ecology and pollinator-driven speciation in sexually deceptive orchids. Phytochemistry, 72(13), 1667–1677. DOI: 10.1016/j.phytochem.2011.03.023

Ballantyne, G., & Willmer, P. 2012. Nectar theft and floral ant-repellence: a link between nectar volume and ant-repellent traits? PLoS ONE, 7(8), e43869. DOI: 10.1371/journal.pone.0043869

Barônio, G. J., Maciel, A. A., Oliveira, A. C., Kobal, R. O. A. C., Meireles, D. A. L., Brito, V. L. G., & Rech, A. R. 2016. Plantas, polinizadores e algumas articulações da biologia da polinização com a teoria ecológica. Rodriguésia, 67(2), 275–293. DOI: 10.1590/2175-7860201667201

Bergamo, P. J., Wolowski, M., Maruyama, P. K., Vizentin-Bugoni, J., Carvalheiro, L. G., & Sazima, M. 2017. The potential indirect effects among plants via shared hummingbird pollinators are structured by phenotypic similarity. Ecology. In press. DOI: 10.1002/ecy.1859

Blande, J. D., & Glinwood, R. 2016. Deciphering chemical language of plant communication. Springer International Publishing, Cham: p. 325. DOI: 10.1007/978-3-319-33498-1

Blarer, A., Keasar, T., & Shmida, A. 2002. Possible mechanisms for the formation of flower size preferences by foraging bumblebees. Ethology, 108, 341–351. DOI: 10.1046/j.1439-0310.2002.00778.x

Blassioli-Moraes, M. C., Laumann, R. A., Paula, D. P., Pareja, M., Silva, C. C. A., Viera, H. G., Naime, J. M., & Borges, M. 2008. Eletroantenografia - a antena do inseto como um biossensor. nº. 270. Brasília: Documentos Embrapa - Recursos Genéticos e Biotecnologia: p. 22.

Bohbot, J. D., & Pitts, R. J. 2015. The narrowing olfactory landscape of insect odorant receptors. Frontiers in Ecology and Evolution, 3, 39. DOI: 10.3389/fevo.2015.00039

Bowker, G. E., & Crenshaw, H. C. 2007. Electrostatic forces in wind-pollination—Part 1: Measurement of the electrostatic charge on pollen. Atmospheric Environment, 41(8), 1587–1595. DOI: 10.1016/j.atmosenv.2006.10.047

Briscoe, A. D., & Chittka, L. 2001. The evolution of color vision in insects. Annual Review of Entomology, 46(1), 471–510.

Brito, V. L. G., Telles, F., & Lunau, K. 2014. Ecologia cognitiva da polinização. In: A. R. Rech, K. Agostini, P. E. A. M. Oliveira, & I. C. Machado (Eds.), Biologia da Polinização. Rio de Janeiro: Editora Projeto Cultural.

Brito, V. L., Weynans, K., Sazima, M., & Lunau, K. 2015. Trees as huge flowers and flowers as oversized floral guides: the role of floral color change and retention of old flowers in Tibouchina pulchra. Frontiers in Plant Science, 6, 362. DOI: 10.3389/fpls.2015.00362

Brito, V. L. G., Pinheiro, M., & Sazima, M. 2010. Sophora tomentosa e Crotalaria vitellina (Fabaceae): Biologia reprodutiva e interações com abelhas na restinga de Ubatuba, São Paulo. Biota Neotropica, 10(1), 185–192.

Brito-Sanchez, M. G., Giurfa, M., Paula Mota, T. R., & Gauthier, M. 2005. Electrophysiological and behavioural characterization of gustatory responses to antennal “bitter” taste in honeybees. European Journal of Neuroscience, 22, 3161–3170. DOI:10.1111/j.1460-9568.2005.04516.x

Brito-Sanchez, M. G., Serre, M., Avarguès-Weber, A., & Dyer, A. G. 2015. Giurfa M. Learning context modulates aversive taste strength in honey bees. Journal of Experimental Biology Mar, 218(6), 949–59. DOI: 10.1242/jeb.117333.

Brito-Sanchez, M. G. 2011. Taste perception in honey bees. Chemical Senses, 36(8), 675–692. DOI: 10.1093/chemse/bjr040

Brito-Sanchez, M. G., Ortigão-Farias, J. R., Gauthier, M., Liu, F. L. & Giurfa, M. 2007. Taste perception in honeybees: just a taste of honey? Arthropod Plant Interact, 1, 69–76. DOI:10.1007/s11829-007-9012-5

Brodie, B. S., Smith, M. A., Lawrence, J., & Gries, G. 2015. Effects of floral scent, color and pollen on foraging decisions and oocyte development of common green bottle flies. PLOS ONE, 10(12), e0145055. DOI: 10.1371/journal.pone.0145055

Bro-Jørgensen, J. 2010. Dynamics of multiple signalling systems: animal communication in a world in flux. Trends in Ecology and Evolution, 25(5), 292–300. DOI: 10.1016/j.tree.2009.11.003

Bronstein, J. L., Barker, J. L., Lichtenberg, E. M., Richardson, L. L., & Irwin, R. E. 2017. The behavioral ecology of nectar robbing: why be tactic constant? Current Opinion in Insect Science, 21, 14–18. DOI: 10.1016/j.cois.2017.05.013

Burger, H., Dötterl, S., & Ayasse, M. 2010. Host-plant finding and recognition by visual and olfactory floral cues in an oligolectic bee. Functional Ecology, 24, 1234–1240. DOI: 10.1111/j.1365-2435.2010.01744.x

Burgett, M., Sukumalanand, P., & Vorwohl, G. 2005. Pollen species resources for Xylocopa (Nyctomelitta) tranquebarica (F.), a night-flying carpenter bee (Hymenoptera: Apidae) of Southeast Asia. Science Asia, 31, 65–68.

Burkle, L. A., & Runyon, J. B. 2017. The smell of environmental change: Using floral scens to explain shifts in pollinator attraction. Applications in Plant Sciences, 5(6), 1600123. DOI: 10.3732/apps.1600123

Campan, R., & Lehrer, M. 2002. Discrimination of closed shapes by two species of bee, Apis mellifera and Megachile rotundata. Journal of Experimental Biology, 205(4), 559–572.

Cembrowski, A. R., Tan, M. G., Thomson, J. D., & Frederickson, M. E. 2014. Ants and ant scent reduce bumblebee pollination of artificial flowers. The American Naturalist, 183(1), 133–139. DOI: 10.1086/674101

Chittka, L., & Menzel, R. 1992. The evolutionary adaptation of flower colours and the insect pollinators' colour vision. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 171(2), 171–181.

Chittka, L., & Peng, F. 2013. Caffeine boosts bees' memories. Science, 339(6124), 1157–1159. DOI: 10.1126/science.1234411

Chittka, L., & Raine, N. E. 2006. Recognition of flowers by pollinators. Current Opinion in Plant Biology, 9(4), 428–435.

Chittka, L., Ings, T. C., & Raine, N. E. 2004. Chance and adaptation in the evolution of island bumblebee behaviour. Population Ecology, 46, 243–251. DOI: 10.1007/s10144-004-0180-1

Chittka, L., Thomson, J. D., & Waser, N. M. 1999. Flower constancy, insect psychology, and plant evolution. Naturwissenschaften, 86(8), 361–377. DOI: 10.1007/s001140050636

Chittka, L., & Thomson, J. D. 2001. Cognitive ecology of pollination. Cambridge: Cambridge Univeristy Press: p. 344.

Clarke, D., Morley, E., & Robert, D. 2017. The bee, the flower, and the electric field: electric ecology and aerial electroreception. Journal of Comparative Physiology A, 203(9), 737–748. DOI 10.1007/s00359-017-1176-6

Clarke, D., Whitney, H., Sutton, G., & Robert, D. 2013. Detection and learning of floral electric Fields by Bumblebees. Science, 340, 66–70. DOI: 10.1126/science.1230883

Cnaani, J., Thomson, J. D., & Papaj, D. R. 2006. Flower choice and learning in foraging bumblebees: effects of variation in nectar volume and concentration. Ethology, 112(3), 278–285, DOI: 10.1111/j.1439-0310.2006.01174.x

Cobert, S. A., Beament, J., & Eisikowitch, D. 1982. Are electrostatic forces involved in pollen transfer? Plant, Cell & Environment, 5(2), 125–129. DOI: 10.1111/1365-3040.ep11571488

Colin, M. E., Richard, D., & Chauzy, S. 1991. Measurement of eletric charges carried by bees: evidence of biological variations. Journal of Bioelectricity, 10(2), 17–32.

Collier, K. F., Albuquerque, G. S., Eiras, A. E., Blackmer, J. L., Araujo, M. C., & Monteiro, L. B. 2001. Estímulos olfativos envolvidos na localização de presas pelo ácaro predador Neoseiulus californicus (McGregor) (Acari: Phytoseiidae) em macieiras e plantas hospedeiras alternativas. Neotropical Entomology, 30(4), 631–639.

Cordeiro, G. D., Pinheiro, M., Dötterl, S., & Alves-dos-Santos, I. 2016. Pollination of Campomanesia phaea (Myrtaceae) by night-active bees: a new nocturnal pollination system mediated by floral scent. Plant Biology, 19(2), 132–139. DOI: 10.1111/plb.12520

Cozzolino, S., Fineschi, S., Litto, M., Scopece, G., Trunschke, J., & Schiestl, F. P. 2015. Herbivory increases fruit set in Silene latifolia: A consequence of induced pollinator-attracting floral volatiles? Journal of Chemical Ecology, 41(7), 622–630. DOI: 10.1007/s10886-015-0597-3

Crepet, W. L., Friis, E. M., & Nixon, K. C. 1991. Fossil evidence for the evolution of biotic pollination. Philosophical Transactions of the Royal Society of London B Biological Sciences, 333, 187–95.

Cunningham, J. P., Moore, C. J., Zalucki, M. P., & Cribb, B. W. 2006. Insect odour perception: recognition of odour components by flower foraging moths. Proceedings of the Royal Society B: Biological Sciences, 273(1597), 2035–2040. DOI: 10.1098/rspb.2006.3559

Dai, Y., & Law, S. E. 1995. Modeling the transient electric field produced by a charged pollen cloud entering a flower. IEEE/IAS Conference, 2, 1395–1402. DOI: 10.1109/IAS.1995.530465

Daly, K., Smith, B., & Wright, G. 2006. Learning-based recognition and discrimination of floral odors. In: N. Dudareva, & E. Pichersky, Biology of Floral Scent. pp. 263–295. CRC Press. DOI: 10.1201/9781420004007.ch12

Dangles, O., Irschick, D. J., Chittka, L., & Casas, J. 2009. Variability in sensory ecology: expanding the bridge between physiology and evolutionary biology. The Quarterly Review of Biology, 84(1), 51–74. DOI: 10.1086/596463

Davenport, D., & Kohanzadeh, Y. 1982. Orchids, bilateral symmetry and insect perception. Journal of Theoretical Biology, 94(2), 241–252. DOI: 10.1016/0022-5193(82)90311-3

Delle-Vedove, R., Juillet, N., Bessière, J.-M., Grison, C., Barthes, N., Pailler, T., & Schatz, B. 2011. Colour-scent associations in a tropical orchid: Three colours but two odours. Phytochemistry, 72(8), 735–742. DOI: 10.1016/j.phytochem.2011.02.005

Dobson, H. E. M., & Bergström, G. 2000. The ecology and evolution of pollen odors. Plant Systematics and Evolution, 222(1–4), 63–87. DOI: 10.1007/BF00984096

Dobson, H. E. M. 2006. Relationship between floral fragrance composition and type of pollinator. In: N. Dudareva & E. Pichersky (Eds.), Biology of Floral Scent. pp. 147–198. Taylor Francis Group, New York.

Dodson, C. H. 1962. The importance of pollination in the evolution of the orchids of tropical America. Bulletin American Orchid Society, 31, 525–534.

Dormont, L., Delle-Vedove, R., Bessière, J.-M., & Schatz, B. 2014. Floral scent emitted by white and coloured morphs in orchids. Phytochemistry, 100, 51–59. DOI: 10.1016/j.phytochem.2014.01.009

Dressler, R. L. 1982. Biology of the orchid bees (Euglossini). Annual Review of Ecology and Systematics, 13(1), 373–394.

Dudareva, N. 2004. Biochemistry of Plant Volatiles. Plant Physiology, 135(4), 1893–1902. DOI: 10.1104/pp.104.049981

Dudareva, N., & Pichersky, E. 2006. Floral scent metabolic pathways: Their regulation and evolution. In: N. Dudareva & E. Pichersky (Eds.), Biology of Floral Scent. pp. 55–78. Boca Raton, FL: CRC Press.

Dudareva, N., Negre, F., Nagegowda, D. A., & Orlova, I. 2006. Plant Volatiles: Recent Advances and Future Perspectives. Critical Reviews in Plant Sciences, 25(5), 417–440. DOI: 10.1080/07352680600899973

Dukas, R. 2004. Evolutionary Biology of Animal Cognition. Annual Review of Ecology, Evolution, and Systematics, 35, 347–374. DOI: 10.1146/annurev.ecolsys.35.112202.130152

Dukas, R. & Ratcliffe, J. M. 2009. Cognitive Ecology II. The University of Chicago Press, Chicago. p. 384.

Dyer, A. G., & Chittka, L. 2004. Biological significance of discriminating between similar colours in spectrally variable illumination: bumblebees as a study case. Journal of Comparative Physiology A, 190, 105–114. DOI: 10.1007/s00359-003-0475-2

Dyer, A. G., & Chittka, L. 2004b. Bumblebees (Bombus terrestris) sacrifice foraging speed to solve difficult colour discrimination tasks. Journal of Comparative Physiology A, 190, 759–763.

Dyer, A. G., Spaethe, J. & Prack, S. 2008. Comparative psuchophysics of bumblebee and honeybee colour discrimination and object detection. Journal of Comparative Physiology A, 194, 617–627.

Dyer, A. G., & Griffiths, D. W. 2011. Seeing near and seeing far; behavioural evidence for dual mechanisms of pattern vision in the honeybee (Apis mellifera). The Journal of Experimental Biology, 215, 397–404. DOI: 10.1242/jeb.060954

Dyer, A. G., Paulk, A. C., & Reser, D. H. 2011. Colour processing in complex environments: insights from the visual system of bees. Proceedings of the Royal Society of London B: Biological Sciences, 278(1707), 952–959. DOI: 10.1098/rspb.2010.2412

Edwards, D. K. 1962. Electrostatic charges on insects due to contact with different substrates. Canadian Journal of Zoology, 40(845), 579–584. DOI: 10.1139/z62-051

Ellis, A. G., & Johnson, S. D. 2010. Floral mimicry enhances pollen export: the evolution of pollination by sexual deceit outside of the orchidaceae. The American Naturalist, 176(5), E143–E151. DOI: 10.1086/656487

Eltz, T., Fritzsch, F., Pech, J. R., Zimmermann, Y., Ramírez, S. R., Quezada-Euan, J. J. G., & Bembé, B. 2011. Characterization of the orchid bee Euglossa viridissima (Apidae: Euglossini) and a novel cryptic sibling species, by morphological, chemical, and genetic characters. Zoological Journal of the Linnean Society, 163(4), 1064–1076. DOI: 10.1111/j.1096-3642.2011.00740.x

Eltz, T., Roubik, D. W., & Lunau, K. 2005. Experience-dependent choices ensure species-specific fragrance accumulation in male orchid bees. Behavioral Ecology and Sociobiology, 59(1), 149–156. DOI: 10.1007/s00265-005-0021-z

Endler, J. A., & Basolo, A. L. 1998. Sensory ecology, receiver biases and sexual selection. Trends in Ecology and Evolution, 13(10), 415–420. DOI: 10.1016/S0169-5347(98)01471-2

Endress, P. K. 1994. Diversity and evolutionary biology of tropical flowers, Oxford, Pergamon Press. Furness, p. 511.

Endress, P. K. 1999. Patterns of floral construction in ontogeny and phylogeny. Biological Journal of the Linnean Society, 39, 153–175.

Erber, J., Kierzek, S., Sander, E., & Grandy, K. 1998. Tactile learning in the honeybee. Journal of Comparative Physiology A, 183, 737. DOI: 10.1007/s003590050296

Erber, J., Pribbenow, B., Bauer, A., & Kloppenburg, P. 1993. Antennal refl exes in the honeybee – tools for studying the nervous-system. Apidologie, 24(3), 283–296.

Erickson, E. H. 1975. Surface electric potentials on worker honeybees leaving and entering the hive. Journal of Apicultural Research, 14(3–4), 141–147. DOI: 10.1080/00218839.1975.11099818

Evoy, W. H., & Jones, B. P. 1971. Motor patterns of male euglossine bees evoked by floral fragrances. Animal Behaviour, 19, 583–588.

Farré-Armengol, G., Filella, I., Llusia, J., & Peñuelas, J. 2013. Floral volatile organic compounds: Between attraction and deterrence of visitors under global change. Perspectives in Plant Ecology, Evolution and Systematics, 15(1), 56–67. DOI: 10.1016/j.ppees.2012.12.002

Fenster, C. B., Cheely, G., Dudash, M. R. & Reynolds, R. J. 2006. Nectar reward and advertisement in hummingbird pollinated Silene virginica (Caryophyllaceae). American Journal of Botany, 93, 1800–1807. DOI: 10.3732/ajb.93.12.1800.

Fialho, M. do C. Q., Guss-Matiello, C. P., Zanuncio, J. C., Campos, L. A. O., & Serrão, J. E. 2014. A comparative study of the antennal sensilla in corbiculate bees. Journal of Apicultural Research, 53(3), 392–403. DOI: 10.3896/IBRA.1.53.3.07

Finger, E., & Burkhardt, D. 1994. Biological aspects of bird colouration and avian colour vision including ultraviolet range. Vision research, 34(11), 1509–1514.

Flamini, G., Cioni, P. L., & Morelli, I. 2002. Differences in the fragrances of pollen and different floral parts of male and female flowers of Laurus nobilis. Journal of Agricultural and Food Chemistry, 50(16), 4647–4652. DOI: 10.1021/jf020269x

Free, J. B. 1970. Effect of flower shapes and nectar guides on the behaviour of foraging honeybees. Behaviour, 37, 269–285.

Freitas, L. 2013. Concepts of pollinator performance: is a simple approach necessary to achieve a standardized terminology? Brazilian Journal of Botany, 36, 3–8. DOI: 10.1007/s40415-013-0005-6

Galen, C., & Kevan, P. G. 1980. Scent and color, floral polymorphisms and pollination biology in Polemonium viscosum Nutt. American Midland Naturalist, 104(2), 281. DOI: 10.2307/2424867

Gegear, R. J., & Laverty, T. M. 2001. The effect of variation among floral traits on the flower constancy of pollinators. Cognitive Ecology of Pollination, 7, 1–20.

Giurfa, M., Dafni, A., & Neal, P. R. 1999. Floral symmetry and its role in plant–pollinator systems. International Journal of Plant Sciences, 160, S41–S50.

Giurfa, M. & Lehrer, M. 2001. Honeybee vision and floral display: from detection to close-up recognition. Cognitive Ecology of Pollination, 61–82.

Giurfa, M., Nunez, J., Chittka, L., & Menzel, R. 1995. Colour preferences of flower-naive honeybees. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 177(3), 247–259.

Giurfa, M., Vorobyev, M., Kevan, P. G., & Menzel, R. 1996. Detection of coloured stimuli by honeybees: minimum visual angles and receptor specific contrasts. Journal of Comparative Physiology A, 178, 699–709.

Gómez, J. M., Bosch, J., Perfectti, F., Fernández, J. D., Abdelaziz, M., & Camacho, J. P. M. 2008. Spatial variation in selection on corolla shape in a generalist plant is promoted by the preference patterns of its local pollinators. Proceedings of the Royal Society of London B: Biological Sciences, 275(1648), 2241–2249.

Gottsberger, G., Silberbauer-Gottsberger, I., Seymour, R. S., & Dötterl, S. 2012. Pollination ecology of Magnolia ovata may explain the overall large flower size of the genus. Flora - Morphology, Distribution, Functional Ecology of Plants, 207(2), 107–118. DOI: 10.1016/j.flora.2011.11.003

Goulson, D. 2000. Are insects flower constant because they use search images to find flowers? Oikos, 88(3), 547–552.

Goulson, D., Cruise, J. L., Sparrow, K. R., Harris, A. J., Park, K. J., Tinsley, M. C., & Gilburn, A. S. 2007. Choosing rewarding flowers; perceptual limitations and innate preferences influence decision making in bumblebees and honeybees. Behavioral Ecology and Sociobiology, 61(10), 1523–1529.

Goulson, D., Stout, J. C., & Hawson, S. A. 1997. Can flower constancy in nectaring butterflies be explained by Darwin’s interference hypothesis? Oecologia, 112(2), 225–231.

Greggers, U., Koch, G., Schmidt, V., Durr, A., Floriou-Servou, A., Piepenbrock, D., & Menzel, R. 2013. Reception and learning of electric fields in bees. Proceedings of the Royal Society B: Biological Sciences, 280(1759), 20130528–20130528. DOI: 10.1098/rspb.2013.0528

Greiner, B. 2006. Adaptations for nocturnal vision in insect apposition eyes. International Review of Cytology, 250, 1–46.

Grüter, C., Moore, H., Firmin, N., Helanterä, H., & Ratnieks, F. L. W. 2011. Flower constancy in honey bee workers (Apis mellifera) depends on ecologically realistic rewards. The Journal of Experimental Biology, 214, 1397–1402. DOI: 10.1242/jeb.050583

Gumbert, A. 2000. Color choices by bumblebees (Bombus terrestris): innate preferences and generalization after learning. Behavioral Ecology and Sociobiology, 48(1), 36–43.

Hanley, M. E., Franco, M., Pichon, S., Darvill, B., & Goulson, D. 2008. Breeding system, pollinator choice and variation in pollen quality in British herbaceous plants. Functional Ecology, 22(4), 592–598, DOI: 10.1111/j.1365-2435.2008.01415.x

Hansen, D. M., Van der Niet, T., & Johnson, S. D. 2012. Floral signposts: testing the significance of visual “nectar guides” for pollinator behaviour and plant fitness. Proceedings of The Royal Society B, 279: 634–639.

Hansson, B. S. & Stensmyr, M. C. 2011. Evolution of insect olfaction. Neuron, 72, 698–711. DOI: 10.1016/j.neuron.2011.11.003

Heinrich, B. 1979. "Majoring" and "Minoring" by Foraging Bumblebees, Bombus vagans: An Experimental Analysis. Ecology, 60(2), 245–255.

Herrera, C. M., Castellanos, M. C. & Medrano, M. 2006. Geographical context of floral evolution: towards an improved research programme in floral diversification. In: L. D. Harder & S. C. H. Barrett (Eds.), Ecology and evolution of flowers. pp. 278–294. Oxford, UK: Oxford University Press.

Herrera, C. M., García, I. M., & Pérez, R. 2008. Invisible floral larcenies: microbial communities degrade floral nectar of bumble bee-pollinated plants. Ecology, 89(9), 2369–2376. DOI: 10.1890/08-0241.1

Hetherington-Rauth, M. C., & Ramírez, S. R. 2016. Evolution and diversity of floral scent chemistry in the euglossine bee-pollinated orchid genus Gongora. Annals of Botany, 118, 135–148. DOI: 10.1093/aob/mcw072

Hills, H. G., Williams, N. H., & Dodson, C. H. 1972. Floral Fragrances and Isolating Mechanisms in the Genus Catasetum (Orchidaceae). Biotropica, 4(2), 61. DOI: 10.2307/2989728

Hopkins, M. J. G., Hopkins, H. C. F., & Sothers, C. A. 2000. Nocturnal pollination of Parkia velutina by Megalopta bees in Amazonia and its possible significance in the evolution of chiropterophily. Journal of Tropical Ecology, 16(5), 733–746.

Howell, A. D., & Alarcón, R. 2007. Osmia bees (Hymenoptera: Megachilidae) can detect nectar-rewarding flowers using olfactory cues. Animal Behaviour, 74, 199–205. DOI: 10.1016/j.anbehav.2006.11.012

Ibarra, N. H., & Giurfa, M. 2003. Discrimination of closed coloured shapes by honeybees requires only contrast to the long wavelength receptor type. Animal Behaviour, 66(5), 903–910.

Ida, T. Y., & Kudo, G. 2003. Floral color change in Weigela middendorffiana (Caprifoliaceae): reduction of geitonogamous pollination by bumblebees. American Journal of Botany, 90(12), 1751–1757.

Ings, T. C., Raine, N. E., & Chittka, L. 2009. A population comparison of the strength and persistence of innate colour preference and learning speed in the bumblebee Bombus terrestris. Behavioral Ecology and Sociobiology, 63(8), 1207–1218.

Inouye, D. W. 1980. The effect of proboscis and corolla tube lengths on patterns and rates of flower visitation by bumblebees. Oecologia, (45), 197–201.

Irwin, R. E., Bronstein, J. L., Manson, J. S., & Richardson, L. 2010. Nectar robbing: ecological and evolutionary perspectives. Annual Review of Ecology, Evolution, and Systematics, 41(1), 271–292. DOI: 10.1146/annurev.ecolsys.110308.120330

Isidorov, V. A., Zenkevich, I. G., & Ioffe, B. V. 1985. Volatile organic compounds in the atmosphere of forests. Atmospheric Environment, (1967), 19(1), 1–8. DOI: 10.1016/0004-6981(85)90131-3

Jander, U., & Jander, R. 2002. Allometry and resolution of bee eyes (Apoidea). Arthropod Structure & Development, 30(3), 179–193.

Jersáková, J., Johnson, S. D. & Kindlmann, P. 2006. Mechanisms and evolution of deceptive pollination in orchids. Biological Review, 81, 219–235.

Jersáková, J., Jurgens, A., Smilauer, P., Johnson, S. D. 2012. The evolution of floral mimicry: identifying traits that visually attract pollinators. Functional Ecology, 26, 1381–1389.

Johnson, S. D., Peter, C. I., Nilsson, L. A., & Ågren, J. 2003. Pollination success in a deceptive orchid is enhanced by co-occurring rewarding magnet plants. Ecology, 84(11), 2919–2927. DOI: 10.1890/02-0471

Junker, R. R., & Parachnowitsch, A. L. 2015. Working towards a holistic view on flower traits-how floral scents mediate plant-animal interactions in concert with other floral characters. Journal of the Indian Institute of Science: A Multidisciplinary Reviews Journal, 95(1), 1–13. DOI: 10.1111/evo.12558

Junker, R. R., & Blüthgen, N. 2008. Floral scents repel potentially nectar-thieving ants. Evolutionary Ecology Research, 10, 295–308.

Junker, R. R., & Blüthgen, N. 2010. Floral scents repel facultative flower visitors, but attract obligate ones. Annals of Botany, 105(5), 777–782. DOI: 10.1093/aob/mcq045

Jürgens, A., Dötterl, S., & Meve, U. 2006. The chemical nature of fetid floral odours in stapeliads (Apocynaceae-Asclepiadoideae-Ceropegieae). New Phytologist, 172(3), 452–468. DOI: 10.1111/j.1469-8137.2006.01845.x

Jürgens, A., Wee, S. L., Shuttleworth, A., & Johnson, S. D. 2013. Chemical mimicry of insect oviposition sites: A global analysis of convergence in angiosperms. Ecology Letters, 16(9), 1157–1167. DOI: 10.1111/ele.12152

Kaczorowski, R. L., Leonard, A. S., Dornhaus, A., & Papaj, D. R. 2012. Floral signal complexity as a possible adaptation to environmental variability: a test using nectar-foraging bumblebees, Bombus impatiens. Animal Behaviour, 83(4), 905–913.

Kantsa, A., Raguso, R. A., Dyer, A. G., Sgardelis, S. P., Olesen, J. M., & Petanidou, T. 2017. Community-wide integration of floral colour and scent in a Mediterranean scrubland. Nature Ecology & Evolution, 1, 1502–1510. DOI: 10.1038/s41559-017-0298-0

Kárpáti, Z., Knaden, M., Reinecke, A., & Hansson, B. S. 2013. Intraspecific combinations of flower and leaf volatiles act together in attracting hawkmoth pollinators. PLoS ONE, 8(9), e72805. DOI: 10.1371/journal.pone.0072805

Katzenberger, T. D., Lunau, K., & Junker, R. R. 2013. Salience of multimodal flower cues manipulates initial responses and facilitates learning performance of bumblebees. Behavioral Ecology and Sociobiology, 67, 1587–1599. DOI: 10.1007/s00265-013-1570-1

Kelber, A., Balkenius, A., Warrant, E. J. 2003. Colour vision in diurnal and nocturnal hawkmoths. Integrative and Comparative Biology, 43(4), 1, 571–579. DOI: 10.1093/icb/43.4.571

Kelber, A., Warrant, E. J., Pfaff, M., Wallén, R., Theobald, J. C., Wcislo, W. T., & Raguso, R. A. 2005. Light intensity limits foraging activity in nocturnal and crepuscular bees. Behavioral Ecology, 17(1), 63–72. DOI: 10.1093/beheco/arj001

Kemp, D. J., Herberstein, M. E., Fleishman, L. J., Endler, J. A., Bennett, A. T. D., Dyer, A. G., Hart, N. S., Marshall, J., & Whiting, M. J. 2015. An integrative framework for the appraisal of coloration in nature. The American Naturalist, 185(6), 705–724. DOI: 10.1086/681021

Kessler, A., Halitschke, R., & Poveda, K. 2011. Herbivory-mediated pollinator limitation: Negative impacts of induced volatiles on plant-pollinator interactions. Ecology, 92(9), 1769–1780. DOI: 10.1890/10-1945.1

Kessler, D., Gase, K., & Baldwin, I. T. 2008. Field experiments with transformed plants reveal the sense of floral scents. Science, 321(5893), 1200–1202.

Kessler, S. C., Tiedeken, E. J., Simcock, K. L., Derveau S., Mitchell, S. S., Stout, J. C., & Wright, G. A. 2015. Bees prefer foods containing neonicotinoid pesticides. Nature, 521, 74–76. DOI: 10.1038/nature14414

Kevan, P. G., & Lane, M. A. 1985. Flower petal microtexture is a tactile cue for bees. Proceedings of the National Academy of Sciences, 82(14), 4750–4752. DOI: 10.1073/pnas.82.14.4750

Kevan, P. G. & Meredith, A. L. 1985. Proceedings of the National Academy of Sciences, (82), 4750–4752.

Kirschvink, J. L., & Gould, J. L. 1981. Biogenic magnetite as a basis for magnetic field detection in animals. Biosystems, 13(3), 181–201. DOI: 10.1016/0303-2647.

Kleineidam, C., Romani, R., Tautz, J., & Isidoro, N. 2000. Ultrastructure and physiology of the CO2 sensitive sensillum ampullaceum in the leaf-cutting ant Atta sexdens. Arthropod Structure & Development, 29(1), 43–55.

Klinkhamer, P. G. L. & de Jong, T. J. 1990. Effects of plant size, plant density and sex differential nectar reward on pollinator visitation in the protandrous Echiurn vulgare (Boraginaceae). Oikos, 57, 399405.

Knudsen, J. T. J., Eriksson, R., Gershenzon, J., & Ståhl, B. 2006. Diversity and distribution of floral scent. The Botanical Review, 72(1), 1–120. DOI: 10.1663/0006-8101(2006)72

Koski, M. H., & Ashman, T.-L. 2015. Floral pigmentation patterns provide an example of Gloger’s rule in plants. Nature Plants, 1(1), 14007. DOI: 10.1038/nplants.2014.7

Koski, M. H., & Ashman, T.-L. 2016. Macro evolutionary patterns of ultraviolet floral pigmentation explained by geography and associated bioclimatic factors. New Phytologist, 211(2), 708–718. DOI: 10.1111/nph.13921

Kulahci, I. G., Dornhaus, A., & Papaj, D. R. 2008. Multimodal signals enhance decision making in foraging bumble-bees. Proceedings. Biological Sciences / The Royal Society, 275(1636), 797–802. DOI: 10.1098/rspb.2007.1176

Kunze, J. 2001. The combined effect of color and odor on flower choice behavior of bumblebees in flower mimicry systems. Behavioral Ecology, 12(4), 447–456. DOI: 10.1093/beheco/12.4.447

Land, M. F. 1997. Visual acuity in insects. Annual review of Entomology, 42(1), 147–177.

Land, M. F., & Nilsson, D. E. 2002. Animal eyes. Oxford: Oxford University Press: p. 271.

Lehrer, M. 1999. Shape perception in the honeybee: symmetry as a global framework. International Journal of Plant Sciences, 160, S51–S65.

Lehrer, M., Horridge, G. A., Zhang, S. W., & Gadagkar, R. 1995. Shape vision in bees: innate preference for flower-like patterns. Philosophical Transactions of the Royal Society B: Biological Sciences, 347(1320), 123–137. DOI: 10.1098/rstb.1995.0017

Leonard, A. S., & Francis, J. S. 2017. Plant–animal communication: past, present and future. Evolutionary Ecology, 31(2), 143–151. DOI: 10.1007/s10682-017-9884-5

Leonard, A. S., & Masek, P. 2014. Multisensory integration of colors and scents: insights from bees and flowers. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 200, 463–474. DOI: 10.1007/s00359-014-0904-4

Leonard, A. S., & Papaj, D. R. 2011. ‘X’ marks the spot: The possible benefits of nectar guides to bees and plants. Functional Ecology, 25(6), 1293–1301. DOI: 10.1111/j.1365-2435.2011.01885.x

Leonard, A. S., Brent, J., Papaj, D. R., & Dornhaus, A. 2013. Floral nectar guide patterns discourage nectar robbing by bumble bees. PLoS ONE, 8(2), e55914. DOI: 10.1371/journal.pone.0055914

Leonard, A. S., Dornhaus, A., & Papaj, D. R. 2011. Forget-me-not: Complex floral displays, inter-signal interactions, and pollinator cognition. Current Zoology, 57(2), 215–224.

Leppik, E. E. 1953. The ability of insects to distinguish number. American Naturalist, 87, 229 –236.

Lihoreau, M., & Raine, N. E. 2013. Bee positive: the importance of electroreception in pollinator cognitive ecology. Frontiers in Psychology, 4, 445. DOI:10.3389/fpsyg.2013.00445.

Loukola, O. J., Perry, C. J., Coscos, L., & Chittka, L. 2017. Bumblebees show cognitive flexibility by improving on an observed complex behavior. Science, 355(6327), 833–836. DOI: 10.1126/science.aag2360

Lucas-Barbosa, D., Van Loon, J. J. A., & Dicke, M. 2011. The effects of herbivore-induced plant volatiles on interactions between plants and flower-visiting insects. Phytochemistry, 72(13), 1647–1654. DOI: 10.1016/j.phytochem.2011.03.013

Lucas‐Barbosa, D., Van Loon, J. J. A., Gols, R., van Beek, T. A. & Dicke, M. 2013. Reproductive escape: annual plant responds to butterfly eggs by accelerating seed production. Functional Ecology, 27, 245–254.

Lunau, K. 1990. Colour saturation triggers innate reactions to flower signals: flower dummy experiments with bumblebees. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 166(6), 827–834.

Lunau, K. 2000. The ecology and evolution of visual pollen signals. Plant Sytstematics and Evolution, 222, 89–111.

Lunau, K., & Maier, E. J. 1995. Innate colour preferences of flower visitors. Journal of Comparative Physiology A, 177, 1–19.

Lunau, K., Konzmann, S., Winter, L., Kamphausen, V., & Ren, Z. X. 2017. Pollen and stamen mimicry: the alpine flora as a case study. Arthropod-Plant Interactions, 3(11), 427–447.

Lunau, K., Papiorek, S., Eltz, T., & Sazima, M. 2011. Avoidance of achromatic colours by bees provides a private niche for hummingbirds. The Journal of Experimental Biology, 214, 1607–1612. DOI: 10.1242/jeb.052688

Lunau, K., Wacht, S., & Chittka, L. 1996. Colour choices of naive bumblebees and their implications for colour perception. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 178(4), 477–489.

Makino, T. T., & Ohashi, K. 2016. Honest signals to maintain a long-lasting relationship: floral colour change prevents plant-level avoidance by experienced pollinators. Functional Ecology, 31, 831–837. DOI: 10.1111/1365-2435.12802

Márquez, M. A. 2009. Floral constancy in bees: a revision of theories and a comparison with other pollinators. Revista Colombiana de Entomologia, 35(2), 206–216.

Martin, H. & Lindauer, M. 1966. Flower petal microtexture is a tactile cue for bees. Zeitschrift für Vergleichende Physiologie, 53, 372–404.

Mathur, G., & Ram, M. 1978. Significance of petal colour in thrips-pollinated Lantana Camara. Annals of Botany, 42, 1473–1476.

McEwen, J. R. & Vamosi, J. C. 2010. Floral colour versus phylogeny in structuring subalpine flowering communities. Proceedings of the Royal Society Biological Sciences, 277, 2957–2965; DOI: 10.1098/rspb.2010.0501

Menzel, R. 1985. Learning in honeybees in an ecological and behavioral context. In: B. Hlldobler & M. Lindauer (Eds.), Experimental Behavioral Ecology. pp. 55–74. Fischer, Stuttgart.

Mesquita-Neto, J. N., Costa, B. K. P., & Schlindwein, C. 2016. Heteranthery as a solution to the demands for pollen as food and for pollination – Legitimate flower visitors reject flowers without feeding anthers. Plant Biology, 19(6), 942–950. DOI: 10.1111/plb.12609

Michener, C. D. 2000. The bees of the world. Baltimore and London: The John Hopkins University Press: p. 913.

Milet-Pinheiro, P., & Gerlach, G. 2017. Biology of the Neotropical orchid genus Catasetum: A historical review on floral scent chemistry and pollinators. Perspectives in Plant Ecology, Evolution and Systematics, 27, 23–34. DOI: 10.1016/j.ppees.2017.05.004

Milet-Pinheiro, P., Ayasse, M., & Dötterl, S. 2015. Visual and olfactory floral cues of Campanula (Campanulaceae) and their significance for host recognition by an oligolectic bee pollinator. Plos One, 10(6), e0128577. DOI: 10.1371/journal.pone.0128577

Milet-Pinheiro, P., Ayasse, M., Schlindwein, C., Dobson, H. E. M., & Dötterl, S. 2012. Host location by visual and olfactory floral cues in an oligolectic bee: innate and learned behavior. Behavioral Ecology, 23(3), 531–538. DOI: 10.1093/beheco/arr219

Milet-Pinheiro, P., Herz, K., Dötterl, S., & Ayasse, M. 2016. Host choice in a bivoltine bee: How sensory constraints shape innate foraging behaviors. BMC Ecology, 16(1), 1–12. DOI: 10.1186/s12898-016-0074-z

Mitchell, R. J., Flanagan, R. J., Brown, B. J., Waser, N. M., & Karron, J. D. 2009b. New frontiers in competition for pollination. Annals of Botany, 103(9), 1403–1413. DOI: 10.1093/aob/mcp062

Mitchell, R. J., Irwin, R. E., Flanagan, R. J., & Karron, J. D. 2009a. Ecology and evolution of plant-pollinator interactions. Annals of Botany, 103(9), 1355–63. DOI: 10.1093/aob/mcp122

Mitchell, R. J, Karron, J. D, Holmquist, K. G, & Bell, J. M. 2004. The influence of Mimulus ringens floral display size on pollinator visitation patterns. Functional Ecology, 18, 116–124.

Mitko, L., Weber, M. G., Ramirez, S. R., Hedenström, E., Wcislo, W. T., & Eltz, T. 2016. Olfactory specialization for perfume collection in male orchid bees. The Journal of Experimental Biology, 219(10), 1467–1475. DOI: 10.1242/jeb.136754

Mizunami, M. 1995. Functional diversity of neural organization in insect ocellar systems. Vision Research, 35(4), 443–452.

Møller, A. P. & Thornhill, R. 1998. Bilateral symmetry and sexual selection: a meta-analysis. The American Naturalist, 151, 174–192.

Møller, A. P. 1990. Fluctuating asymmetry in male sexual ornaments may reliably reveal male quality. Animal Behavior, 40, 1185–1187.

Møller, A. P. 2000. Developmental stability and pollination. Oecologia, 123, 149–157.

Møller, A. P & Eriksson, M. 1995. Pollinator preference for symmetrical flowers and sexual selection in plants. Oikos, 73,15–22.

Muth, F., Francis, J. S., & Leonard, A. S. 2016. Bees use the taste of pollen to determine which flowers to visit. Biology Letters, 12(7), 20160356. DOI: 10.1098/rsbl.2016.0356

Muth. F., Cooper, T. R, Bonilla, R. F, & Leonard, A. S. 2018. A novel protocol for studying bee cognition in the wild. Methods in Ecology and Evolution, 9, 78–87. DOI: 10.1111/2041-210X.12852

Nathans, J. 1999. The evolution and physiology of human color vision: insights from molecular genetic studies of visual pigments. Neuron, 24(2), 299–312.

Naug, D. & Arathi, H. S. 2007. Receiver bias for exaggerated signals in honeybees and its implications for the evolution of floral displays. Biology Letters, 3, 635–637.

Ne’eman, G., & Ne’eman, R. 2017. Factors determining visual detection distance to real flowers by Bumble bees. Journal of Pollination Ecology, 20(1), 1–12.

Neal, P. R., Dafni, A., & Giurfa, M. 1998. Floral symmetry and its role in plant-pollinator sytems: terminology, distribution, and hypotheses. Annual Review of Ecology and Systematics, 29(1), 345–373. DOI: 10.1146/annurev.ecolsys.29.1.345

Nepi, M., von Aderkas, P., Wagner, R., Mugnaini, S., Coulter, A., & Pacini, E. 2009. Nectar and pollination drops: how different are they? Annals of Botany, 104(2), 205–219. DOI:10.1093/aob/mcp124.

Nishihara, M., & Nakatsuka, T. 2011. Genetic engineering of flavonoid pigments to modify flower color in floricultural plants. Biotechnology Letters, 33(3), 433–441.

Nishihara, M., Nakatuska, T. 2010. Genetic engineering of novel flower colors in floricultural plants: Recent advances via transgenic approaches. In: S. M. Jain & S. J. Ochatt (Eds.), Protocols for in vitro propagation of ornamental plants. pp. 325–347. Humana Press, Totowa, New Jersey.

Nunes, C. E., Gerlach, G., Bandeira, K. D., Gobbo-Neto, L., Pansarin, E. R., & Sazima, M. 2016. Two orchids, one scent? Floral volatiles of Catasetum cernuum and Gongora bufonia suggest convergent evolution to a unique pollination niche. Flora (Jena), 232, 207–216. DOI: 10.1016/j.flora.2016.11.016

Ohashi, K. & Yahara, T. 2001. Behavioral responses of pollinators to variation in floral display size and their influences on the evolution of floral traits. In: L. Chittka & J. D. Thomson (Eds.), Cognitive Ecology of Pollination: Animal Behaviour and Floral Evolution. pp. 274–296. Cambridge University Press, New York.

Ohashi, K. & Yahara, T. 2002. Visit larger displays but probe proportionally fewer flowers: counterintuitive behaviour of nectar-collecting bumblebees achieves an ideal free distribution. Functional Ecology, 16, 492–503.

Ohashi, K., Makino, T. T., & Arikawa, K. 2015. Floral colour change in the eyes of pollinators: testing possible constraints and correlated evolution. Functional Ecology, 29, 1144–1155. DOI: 10.1111/1365-2435.12420

Ollerton, J., Grace, J., & Smith, K. 2007. Pollinator behaviour and adaptative floral colour change in Anthophora alluadii (Hymenoptera: Apidae) and Erysimun scoparium (Brasicaceae) on Tenerife. Entomologia Generalis, 29(2/4), 253–268.

Onagbola, E. O., Meyer, W. L., Boina, D. R., & Stelinski, L. L. 2008. Morphological characterization of the antennal sensilla of the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), with reference to their probable functions. Micron, 39(8), 1184–1191. DOI: 10.1016/j.micron.2008.05.002

Ozaki, M. 2005. Ant nestmate and non-nestmate discrimination by a chemosensory sensillum. Science, 309(5732), 311–314. DOI: 10.1126/science.1105244

Pansarin, L. M., Pansarin, E. R., & Sazima, M. 2014. Osmophore structure and phylogeny of Cirrhaea (Orchidaceae, Stanhopeinae). Botanical Journal of the Linnean Society, 176(3), 369–383. DOI: 10.1111/boj.12206

Parachnowitsch, A. L., Raguso, R. A., & Kessler, A. 2012. Phenotypic selection to increase floral scent emission, but not flower size or colour in bee-pollinated Penstemon digitalis. New Phytologist, 195(3), 667–675. DOI: 10.1111/j.1469-8137.2012.04188.x

Pareja, M., Qvarfordt, E., Webster, B., Mayon, P., Pickett, J., Birkett, M., & Glinwood, R. 2012. Herbivory by a phloem-feeding insect inhibits floral volatile production. PLoS ONE, 7(2). DOI: 10.1371/journal.pone.0031971

Paulino-Neto, H. F. 2014. Polinização e biologia reprodutiva de Araticum-liso (Annona coriacea Mart.: Annonaceae) em uma área de cerrado paulista: implicações para fruticultura. Revista Brasileira de Fruticultura, 36, 132–140.

Peitsch, D., Fietz, A., Hertel, H., de Souza, J., Ventura, D. F., & Menzel, R. 1992. The spectral input systems of hymenopteran insects and their receptor-based colour vision. Journal of Comparative Physiology A Sensory, Neural, and Behavioral Physiology, 170(1), 23–40.

Pélabon, C., Thöne, P., Hansen, T. F., & Armbruster, W. S. 2012. Signal honesty and cost of pollinator rewards in Dalechampia scandens (Euphorbiaceae). Annals of botany, 109(7), 1331–1340.

Pierik, R., Ballaré, C. L., & Dicke, M. 2014. Ecology of plant volatiles: taking a plant community perspective. Plant, Cell & Environment, 37(8), 1845–1853. DOI: 10.1111/pce.12330

Pinheiro, M., Gaglianone, M. C., Nunes, C. E. P., Sigrist, M. R., Santos, I. A. 2014. Polinização por abelhas. In: A. R. Rech, K. Agostini, P. E. A. M. De Oliveira, & I. C. Machado (Eds.), Biologia da Polinização. pp. 417–438. Rio de Janeiro: Editora Projeto Cultural.

Potts, S. G., Vulliamy, B., Dafni, A., Ne'eman, G., & Willmer, P. 2003. Linking bees and flowers: how do floral communities structure pollinator communities? Ecology, 84(10), 2628–2642. DOI: 10.1890/02-0136

Praagh, J. V., Ribi, W., Wehrhahn, C., & Wittmann, D. 1980. Drone bees fixate the queen with the dorsal frontal part of their compound eyes. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 136(3), 263–266.

Praz, C. J., Muller, & Dorn, S. 2008. Host recognition in a pollen-specialist bee: evidence for a genetic basis. Apidologie, 39(5), 547–557. DOI: Doi 10.1051/Apido:2008034

Raguso, R. A. 2004. Flowers as sensory billboards: progress towards an integrated understanding of floral advertisement. Current Opinion in Plant Biology, 7, 434–440. DOI: 10.1016/j.pbi.2004.05.010

Raguso, R. A. 2004. Why Are Some Floral Nectars Scented? Ecology, 85(6), 1486–1494.

Raguso, R. A. 2008. The “invisible hand” of floral chemistry. Science, 321(5893), 11631164. DOI:10.1126/science.1163570

Raguso, R. A. 2008. Wake Up and smell the roses: the ecology and evolution of floral scent. The Annual Review of Ecology, Evolution, and Systematics, 39, 549–569. DOI: 10.1146/annurev.ecolsys.38.091206.095601

Raguso, R. A., & Willis, M. A. 2002. Synergy between visual and olfactory cues in nectar feeding by wild hawkmoths, Manduca sexta. Animal Behaviour, 69(2), 407–418. DOI: 10.1016/j.anbehav.2004.04.015

Raguso, R. A., Levin, R. A., Foose, S. E., Holmberg, M. W., & McDade, L. A. 2003. Fragrance chemistry, nocturnal rhythms and pollination “syndromes” in Nicotiana. Phytochemistry, 63(3), 265–284. DOI: 10.1016/S0031-9422(03)00113-4

Raine, N. E, & Gill, R. J. 2015. Tasteless pesticides affect bees in the field. Nature 521, 38–39. DOI: 10.1038/nature14391

Raine, N. E., & Chittka, L. 2007. The adaptive significance of sensory bias in a foraging context: floral colour preferences in the bumblebee Bombus terrestris. PLoS ONE, 2(6), e556. DOI: 10.1371/journal.pone.0000556

Raine, N. E., Ings, T. C., Dornhaus, A., Saleh, N., & Chittka, L. 2006. Adaptation, genetic drift, pleiotropy, and history in the evolution of bee foraging behavior. Advances in the Study of Behavior, 36, 305–354.

Ram, H. M., & Mathur, G. 1984. Flower colour changes in Lantana camara. Journal of Experimental Botany, 35(11), 1656–1662.

Ramírez, S. R., Eltz, T., Fritzsch, F., Pemberton, R., Pringle, E. G., & Tsutsui, N. D. 2010. Intraspecific geographic variation of fragrances acquired by orchid bees in native and introduced populations. Journal of Chemical Ecology, 36(8), 873–884. DOI: 10.1007/s10886-010-9821-3

Ravaiano, S. V., Ferreira, R. de P., Campos, L. A. de O., & Martins, G. F. 2014. The antennal sensilla of Melipona quadrifasciata (Hymenoptera: Apidae: Meliponini): a study of different sexes and castes. Naturwissenschaften, 101(8), 603–611. DOI: 10.1007/s00114-014-1184-0

Rech, A. R., Agostini, K., Oliveira, P. E., & Machado, I. C. 2014. Biologia da polinização. Editora Projeto Cultural, Rio de Janeiro. p. 524.

Reinhard, J., Sinclair, M., Srinivasan, M. V., & Claudianos, C. 2010. Honeybees learn odour mixtures via a selection of key odorants. PLoS ONE, 5(2), 1–14. DOI: 10.1371/journal.pone.0009110

Rering, C. C., Beck, J. J., Hall, G. W., McCartney, M. M., & Vannette, R. L. 2018. Nectar-inhabiting microorganisms influence nectar volatile composition and attractiveness to a generalist pollinator. New Phytologist, 220(3), 750–759 DOI: 10.1111/nph.14809

Reverté, S., Retana, J., Gómez, J. M., & Bosch, J. 2016. Pollinators show flower colour preferences but flowers with similar colours do not attract similar pollinators. Annals of Botany, 118(2), 249–257. DOI: 10.1093/aob/mcw103

Riffell, J. A. 2011. The neuroecology of a pollinator’s buffet: Olfactory preferences and learning in insect pollinators. Integrative and Comparative Biology, 51(5), 781–793. DOI: 10.1093/icb/icr094

Riffell, J. A., Shlizerman, E., Sanders, E., Abrell, L., Medina, B., Hinterwirth, A. J., & Kutz, J. N. 2014. Flower discrimination by pollinators in a dynamic chemical environment. Science, 344(6191), 1515–1518.

Rodríguez, I., Gumbert, A., de Ibarra, N. H., Kunze, J., & Giurfa, M. 2004. Symmetry is in the eye of the ‘beeholder’: innate preference for bilateral symmetry in flower-naïve bumblebees. Naturwissenschaften, 91(8), 374–377.

Rodríguez-Gironés, M. A., & Santamaría, L. 2004. Why are so many bird flowers red? PLOS Biology, 2(10), e350.

Rodríguez-Gironés, M. A., Trillo, A., & Corcobado, G. 2013. Long term effects of aversive reinforcement on colour discrimination learning in free-flying bumblebees. PLoS ONE, 8(8), e71551. DOI: 10.1371/journal.pone.0071551

Rowe, C. 1999. Receiver psychology and the evolution of multicomponent signals. Animal Behaviour, 58, 921–931.

Rowe, C. 2013. Receiver psychology: a receiver’s perspective. Animal Behaviour, 85(3), 517–523. DOI: 10.1016/j.anbehav.2013.01.004

Rusch, C., Broadhead, G. T., Raguso, R. A., & Riffell, J. A. 2016. Olfaction in context — sources of nuance in plant–pollinator communication. Current Opinion in Insect Science, 15, 53–60. DOI: 10.1016/j.cois.2016.03.007

Sánchez, D., Nieh, J. C., & Vandame, R. 2011. Visual and chemical cues provide redundant information in the multimodal recruitment system of the stingless bee Scaptotrigona mexicana (Apidae, Meliponini). Insectes Sociaux, 58, 575–579. DOI: 10.1007/s00040-011-0181-y

Sargent, R. D. 2004. Floral symmetry affects speciation rates in angiosperms. Proceedings of the Royal Society B: Biological Sciences, 271(1539), 603–608. DOI: 10.1098/rspb.2003.2644

Sarmento, R. A., de Lemos, F., Dias, C. R., Pallini, A., & Venzon, M. 2008. Infoquímicos induzidos por herbivoria mediando a comunicação entre plantas de tomate e o predador Cycloneda sanguinea (Coleoptera: Coccinellidae). Ceres, 55(5), 439–444.

Sato, K., & Touhara, K. 2008. Insect Olfaction: Receptors, Signal Transduction, and Behavior. In: S. Korsching & W. Meyerhof (Eds.), Chemosensory Systems in Mammals, Fishes, and Insects. pp. 203–220. Springer Berlin Heidelberg, Berlin, Heidelberg. DOI: 10.1007/978-3-540-69919-4

Sazima, M., Buzato, S., & Sazima, I. 1999. Bat-pollinated flower assemblages and bat visitors at two Atlantic forest sites in Brazil. Annals of Botany, 83(6), 705–712.

Sazima, M., Vogel, S., Cocucci, A., & Hausner, G. 1993. The perfume flowers of Cyphomandra (Solanaceae): Pollination by euglossine bees, bellows mechanism, osmophores, and volatiles. Plant Systematics and Evolution, 187(1), 51–88.

Schaefer, H. M. & Ruxton, G. D. 2010. Deception in plants: mimicry or perceptual exploitation? Trends in Ecology & Evolution, 24, 676–684.

Scheiner, R, & Amdam, G. V. 2009. Impaired tactile learning is related to social role in honeybees. The Journal of Experimental Biology, 212(7), 994–1002. DOI: 10.1242/jeb.021188.

Scheiner, R., Kuritz-Kaiser, A., Menzel, R., & Erber, J. 2005. Sensory responsiveness and the effects of equal subjective rewards on tactile learning and memory of honeybees. Learning & Memory, 12(6), 626–635. DOI: 10.1101/lm.98105

Scheiner, R., Barnert, M., & Erber, J. 2003. Variation in water and sucrose responsiveness during the foraging season affects proboscis extension learning in honey bees. Apidologie, 34, 67–72. DOI: 10.1051/apido:2002050

Scheiner, R., Erber, J., & Page, R. E. 1999. Tactile learning and the individual evaluation of the reward in honey bees (Apis mellifera L.). Journal of Comparative Physiology A 185, 1–10. DOI: 10.1007/s003590050360

Scheiner, R., Page, R. E., & Erber, J. 2001a. Responsiveness to sucrose affects tactile and olfactory learning in preforaging honey bees of two genetic strains. Behavioural Brain Research, 120, 67–73. DOI: 10.1016/S0166-4328(00)00359-4

Scheiner, R., Page, R. E., & Erber, J. 2001b. The effects of genotype, foraging role and sucrose perception on the tactile learning performance of honey bees (Apis mellifera L.). Neurobiology of Learning and Memory, 76, 138–150. DOI: 10.1006/nlme.2000.3996

Schiestl, F. P. 2005. On the success of a swindle: pollination by deception in orchids. Naturwissenschaften, 92(6), 255–264. DOI: 10.1007/s00114-005-0636-y

Schiestl, F. P. 2010. Pollination: Sexual mimicry abounds. Current Biology, 20(23), R1020–R1022. DOI: 10.1016/j.cub.2010.10.019

Schiestl, F. P. 2015. Ecology and evolution of floral volatile- mediated information transfer in plants. New Phytologist, 206, 571–577. DOI: 10.1111/nph.13243

Schiestl, F. P., & Ayasse, M. 2002. Do changes in floral odor cause speciation in sexually deceptive orchids? Plant Systematics and Evolution, 234(1), 111–119.

Schiestl, F. P., & Roubik, D. W. 2003. Odor Compound Detection in Male Euglossine Bees. Journal of Chemical Ecology, 29(1), 253–257. DOI: 10.1023/A:1021932131526

Schiestl, F. P., & Schlüter, P. M. 2009. Floral isolation, specialized pollination, and pollinator behavior in orchids. Annual Review of Entomology, 54, 425–46. DOI: 10.1146/annurev.ento.54.110807.090603

Schiestl, F. P., Ayasse, M., Paulus, H. F., Löfstedt, C., Hansson, B. S., Ibarra, F., & Francke, W. 1999. Orchid pollination by sexual swindle. Nature, 399(6735), 421–421.

Schiestl, F. P., Johnson, S. D., & Raguso, R. A. 2010. Floral evolution as a figment of the imagination of pollinators. Trends in Ecology and Evolution, 25(7), 382. DOI: 10.1016/j.tree.2010.03.004

Schiestl, F. P., Kirk, H., Bigler, L., Cozzolino, S., & Desurmont, G. A. 2014. Herbivory and floral signaling: Phenotypic plasticity and tradeoffs between reproduction and indirect defense. New Phytologist, 203(1), 257–266. DOI: 10.1111/nph.12783

Schiestl, F. P., Peakall, R., Mant, J. G., Ibarra, F., Schulz, C., Franke, S., & Francke, W. 2003. The chemistry of sexual deception in an orchid-wasp pollination system. Science, 302(5644), 437–438.

Schlindwein, C., Westerkamp, C., Carvalho, A. T., & Milet-pinheiro, P. 2014. Visual signalling of nectar-offering flowers and specific morphological traits favour robust bee pollinators in the mass-flowering tree Handroanthus impetiginosus (Bignoniaceae). Botanical Journal of the Linnean Society, 176, 396–407.

Shivanna, K. R. 2014. Biotic Pollination. In: A. Maciel-Silva & C. K. Porto (Eds.),. Reproductive Biology of Plants. pp. 218–267. CRC Press. DOI: 10.1201/b16535-12

Singaravelan, N., Inbar, M., Ne'eman, G., Distl, M., Wink, M., & Izhaki, I. 2006. The effects of nectar–nicotine on colony fitness of caged honeybees. Journal of Chemical Ecology, 32(1), 49–59.

Singaravelan, N., Nee'man, G., Inbar, M., & Izhaki, I. 2005. Feeding responses of free-flying honeybees to secondary compounds mimicking floral nectars. Journal of Chemical Ecology, 31(12), 2791–2804. DOI:10.1007/s10886-006-9350-2

Skorupski, P., & Chittka, L. 2006. Animal cognition: An insect's sense of time? Current Biology, 16, R851–R853.

Snyder, A. W. 1977. Acuity of compound eyes: physical limitations and design. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 116(2), 161–182.

Soares, N. C., & Morellato, L. P. C. 2017. Crepuscular pollination and reproductive ecology of Trembleya laniflora (Melastomataceae), an endemic species in mountain rupestrian grasslands. Flora, 238, 138–147. DOI: 10.1016/j.flora.2016.12.005

Somanathan, H., Borges, R. M., Warrant, E. J., & Kelber, A. 2008. Nocturnal bees learn landmark colours in starlight. Current Biology, 18(21), R996–R997.

Spaethe, J., Brockmann, A., Halbig, C., & Tautz, J. 2007. Size determines antennal sensitivity and behavioral threshold to odors in bumblebee workers. Naturwissenschaften, 94(9), 733–739. DOI: 10.1007/s00114-007-0251-1

Spaethe, J., Tautz, J., & Chittka, L. 2001. Visual constraints in foraging bumblebees: flower size and color affect search time and flight behavior. Proceedings of the National Academy of Sciences of the United States of America, 98(7), 3898–903. DOI: 10.1073/pnas.071053098

Sprengel, C. K. 1793. Das entdeckte Geheimnis der Natur im Bau und in der Befruchtung der Blumen. Berlin: Vieweg: p. 443.

Srinivasan, M. V., & Lehrer, M. 1984. Temporal acuity of honeybee vision: Behavioural studies using moving stimuli. Journal of Comparative Physiology A, 155, 297–312.

Stanley, D. A., Otieno, M., Steijven, K., Berlin, E. S., Piironen, T., Willmer, P. Nuttman, C. V. 2016. Pollination ecology of Desmodium setigerum (Fabaceae) in Uganda; do big bees do it better? Journal of Pollination Ecology, 19(7), 43–49.

Stebbins, G. L. 1951. Natural selection and differentiation of Angiosperm families. Evolution, 5, 299–324.

Stebbins, G. L. 1974. Flowering Plants— Evolution Above the Species Level. London: Edward Arnold. p. 399.

Steinbrecht, R. A. 1996. Structure and function of insect olfactory sensilla. Ciba Foundation Symposium, 200, 158–174. DOI: 10.1002/9780470514948.ch13

Stengl, M., Ziegelberger, G., Boekhoff, I., & Krieger, J. 1999. Perireceptor Events and Transduction Mechanisms in Insect Olfaction. In: B. S. Hansson (Ed.), Insect Olfaction. pp. 49–66. Springer Berlin Heidelberg, Berlin, Heidelberg.

Stephenson, A. G. 1981. Flower and fruit abortion: proximate causes and ultimate functions. Annual Review of Ecology and Systematics, 12, 253–279.

Streinzer, M., Paulus, H. F., & Spaethe, J. 2009. Floral colour signal increases short-range detectability of a sexually deceptive orchid to its bee pollinator. Journal of Experimental Biology, 212(9), 1365–1370.

Sutcliffe, J. F. 1994. Sensory bases of attractancy: morphology of mosquito olfactory sensilla-a review. Journal of the American Mosquito Control Association, 10(2), 309–315.

Sutton, G. P., Clarke, D., Morley, E. L., & Robert, D. 2016. Mechanosensory hairs in bumblebees (Bombus terrestris) detect weak electric fields. Proceedings of the National Academy of Sciences, 201601624. DOI: 10.1073/pnas.1601624113

Suzuki, M. F., & Ohashi, K. 2014. How does a floral colour‐changing species differ from its non‐colour‐changing congener? –a comparison of trait combinations and their effects on pollination. Functional Ecology, 28(3), 549–560.

Tanaka, Y. & Brugliera, F. 2006. Flower colour. In: C. Ainsworth (Ed.), Flowering an its manipulation. pp. 201–239. Ashford, Blackwell Publishing.

Telles, F. J., Corcobado, G., Trillo, A., & Rodríguez-Gironés, M. A. 2017. Multimodal cues provide redundant information for bumblebees when the stimulus is visually salient, but facilitate red target detection in a naturalistic background. PLoS ONE, 12(9). DOI: 10.1371/journal.pone.0184760

Thomson, J. D., Draguleasa, M. A., & Tan, M. G. 2015. Flowers with caffeinated nectar receive more pollination. Arthropod-Plant Interactions, 9(1), 1–7. DOI: 10.1007/s11829-014-9350-z.

Vaknin, Y., Gan-Mor, S., Bechar, A., Ronen, B., Eisikowitch, D. 2000. The role of electrostatic forces in pollination. Plant Systematics and Evolution, 222, 133–142.

Vidal, W. N. & Vidal, M. R. R. 2000. Botânica: organografia. Viçosa: UFV. p. 124.

Vogel, S. 1963. Duftdrüsen im Dienste der Bestäubung: über Bau und Funktion der Osmophoren. Akademie der Wissenschaften und der Literatur. p. 165.

Vorobyev, M., Gumbert, A., Kunze, J., Giurfa, M., & Menzel, R. 1997. Flowers through insect eyes. Israel Journal of Plant Sciences, 45(2–3), 93–101.

Wang, R., Xu, S., Liu, X., Zhang, Y., Wang, J., & Zhang, Z. 2014. Thermogenesis, flowering and the association with variation in floral odour attractants in Magnolia sprengeri (Magnoliaceae). PLoS ONE, 9(6), e99356. DOI: 10.1371/journal.pone.0099356

Wang, Y., Li, D., Liu, Y., Li, X.-J., Cheng, W.-N., & Zhu-Salzman, K. 2016. Morphology, ultrastructure and possible functions of antennal sensilla of Sitodiplosis mosellana Géhin (Diptera: Cecidomyiidae). Journal of Insect Science, 16(1), 93. DOI: 10.1093/jisesa/iew080

Warnke, U. 1976. Effects of electric charges on honeybees. Bee World, 57(2), 50–56. DOI: 10.1080/0005772X.1976.11097592

Warrant, E. J. 2008. Seeing in the dark: vision and visual behaviour in nocturnal bees and wasps. Journal of Experimental Biology, 211(11), 1737–1746. DOI: 10.1242/jeb.015396

Warrant, E. J., Kelber, A., Gislén, A., Greiner, B., Ribi, W., & Wcislo, W. T. 2004. Nocturnal vision and landmark orientation in a tropical halictid bee. Current Biology, 14(15), 1309–1318.

Waser, N. M. 1978. Interspecific pollen transfer and competition between co-occurring plant species. Oecologia, 36(2), 223–236.

Waser, N. M. 1986. Flower constancy: definition, cause, and measurement. The American Naturalist, 127(5), 593–603. DOI: 10.1086/284507

Waser, N. M., & Ollerton, J. 2006. Plant-pollinator interactions: from specialization to generalization. Chicago: University of Chicago Press: p. 445.

Wcislo, W. T., Arneson, L., Roesch, K., Gonzalez, V., Smith, A., & Fernández, H. 2004. The evolution of nocturnal behaviour in sweat bees, Megalopta genalis and M. ecuadoria (Hymenoptera: Halictidae): An escape from competitors and enemies? Biological Journal of the Linnean Society, 83(3), 377–387. DOI: 10.1111/j.1095-8312.2004.00399.x

Weiss, M. R. 1995. Floral color change: a wide spread functional convergence. American Journal of Botany, 82, 167–186. DOI: 10.2307/2445525

Weiss, M. R., & Lamont, B. B. 1997. Floral color change and insect pollination: a dynamic relationship. Israel Journal of Plant Sciences, 45(2–3), 185–199. DOI: 10.1080/07929978.1997.10676683

Westerkamp, C., & Claßen-Bockhoff, R. 2007. Bilabiate flowers: the ultimate response to bees? Annals of Botany, 100(2), 361–374.

Whitehead, M. R., & Peakall, R. 2009. Integrating floral scent, pollination ecology and population genetics. Functional Ecology, 23(5), 863–874. DOI: 10.1111/j.1365-2435.2009.01620.x

Whitney, H. M., Chittka, L., Bruce, T. J. A., & Glover, B. J. 2009. Conical epidermal cells allow bees to grip flowers and increase foraging efficiency. Current Biology, 19(11), 948–953. DOI: 10.1016/j.cub.2009.04.051

Whitten, W. M., Young, A. M., & Williams, N. H. 1989. Function of glandular secretions in fragrance collection by male euglossine bees (Apidae: Euglossini). Journal of Chemistry Ecology, 15, 1285–1295.

Willmer, P. 2011. Pollination and floral ecology. Princeton University Press. p. 778.

Willmer, P. G., & Stone, G. N. 1997. How aggressive ant guards assist in seed set in Acacia flowers. Nature, 388, 165–167. DOI: 10.1038/40610

Willmer, P. G., Nuttman, C. V., Raine, N. E., Stone, G. N., Pattrick, J. G., Henson, K., & Knudsen, J. T. 2009. Floral volatiles controlling ant behaviour. Functional Ecology, 23(5), 888–900. DOI: 10.1111/j.1365-2435.2009.01632.x

Wilson, P., & Stine, M. 1996. Floral constancy in bumble bees: handling efficiency or perceptual conditioning? Oecologia, 106(4), 493–499. DOI: 10.1007/BF00329707

Wolowski, M., Carvalheiro, L. G.; & Freitas, L. 2017. Influence of plant–pollinator interactions on the assembly of plant and hummingbird communities. Journal of Ecology, 105(2), 332–344.

Wright, G. A., Baker, D. D., Palmer, M. J., Stabler, D., Mustard, J. A., Power, E. F.& Stevenson, P. C. 2013. Caffeine in floral nectar enhances a pollinator's memory of reward. Science, 339(6124), 1202–1204, DOI: 10.1126/science.1228806

Yan, J., Wang, G., Sui, Y., Wang, M., & Zhang, L. 2016. Pollinator responses to floral colour change, nectar, and scent promote reproductive fitness in Quisqualis indica (Combretaceae). Scientific Reports, 6, 24408. DOI: 10.1038/srep24408

Yong, E. 2013. Bees can sense the electric fields of flowers. Phenomena: a science salon. National Geographic. Disponível em: http://phenomena.nationalgeographic.com/2013/02/21/bees-can-sense-the-electric-fields-of-flowers/. Acesso em novembro de 2017.

Zakon, H. H. 2016. Electric fields of flowers stimulate the sensory hairs of bumblebees. Proceedings of the National Academy of Sciences, 113(26), 201607426. DOI: 10.1073/pnas.1607426113

Zhang, W.; Kramer, E. M. & Davis, C. C. 2016. Differential expression of CYC2 genes and the elaboration of floral morphologies in hiptage, an Old World genus of Malpighiaceae. International Journal of Plant Sciences, 177(7), 551–558. DOI: 10.1086/687225

Zimmermann, Y., Ramírez, S. R., & Eltz, T. 2009. Chemical niche differentiation among sympatric species of orchid bees. Ecology, 90(11), 2994–3008.

Published

2018-12-18