MATÉRIA ORGÂNICA DISSOLVIDA CROMÓFORA E NÃO CROMÓFORA EM SISTEMAS FLUVIAIS TROPICAIS

Authors

  • Juliana Sobreira de Souza Universidade Estadual do Norte Fluminense Darcy Ribeiro, Centro de Biociências e Biotecnologia, Laboratório de Ciências Ambientais, Av. Alberto Lamego, 2000, Parque Califórnia, CEP 28013-602, Campos dos Goytacazes, RJ, Brasil.
  • Paulo Pedrosa Universidade Estadual do Norte Fluminense Darcy Ribeiro, Centro de Biociências e Biotecnologia, Laboratório de Ciências Ambientais, Av. Alberto Lamego, 2000, Parque Califórnia, CEP 28013-602, Campos dos Goytacazes, RJ, Brasil.

DOI:

https://doi.org/10.4257/oeco.2019.2301.01

Keywords:

colored dissolved organic matter, photochemistry, rivers, yellow substances

Abstract

Resumo: A fração cromófora da matéria orgânica dissolvida (MOD) atua como principal componente absorvedor de luz ultravioleta (UV) e visível em ecossistemas aquáticos. Esta propriedade óptica tem importante implicação energética e adaptativa para os organismos aquáticos em função dos processos fotossintéticos e dos possíveis efeitos deletérios da radiação ultravioleta aos sistemas biológicos. Esta revisão aborda informações técnico-científicas através da realização de um levantamento bibliográfico de publicações acerca da matéria orgânica dissolvida cromófora (MODC) e não cromófora em sistemas fluviais tropicais, incluindo caracterizações tipicamente realizadas em tais tipos de estudos ao longo das últimas décadas. Este trabalho destaca que a origem (i.e., autóctone e/ou alóctone) e a natureza (i.e., substâncias refratárias ou lábeis) da MOD influenciam a absorção espectral e a sua resistência à degradação fotoquímica e biológica. A MODC apresenta um espectro de absorção que decresce exponencialmente com o comprimento de onda crescente, do ultravioleta até a região da luz visível, influenciando assim a distribuição espectral e disponibilidade de luz na coluna d'água. Considerando que a MOD (cromófora e não cromófora) é uma variável interativamente relacionada a múltiplos processos físico-químicos (ex. hidrológicos, foto-oxidativos) e biológicos (ex. degradação microbiana), nós concluímos que ela é um potente referente ambiental em pesquisas relacionais de sistemas aquáticos em geral, capaz de permear uma integração diagnóstica na qualificação e caracterização de águas naturais.

CHROMOPHORIC AND NON CHROMOPHORIC DISSOLVED ORGANIC MATTER IN TROPICAL FLUVIAL SYSTEMS. The chromophoric fraction of dissolved organic matter acts as the main ultraviolet (UV) and visible light absorbing component in aquatic ecosystems. This optical property has important energetic and adaptive implication for aquatic organisms due to photosynthetic processes and the possible deleterious effects of UV radiation on biological systems. This review addresses technical and scientific information by conducting a literature review of publications on chromophoric (CDOM) and non-chromophoric dissolved organic matter in tropical river systems, including characterizations typically performed in such types of studies over the last decades. This work highlights that the origin (i.e., autochthonous and/or allochthonous) and the nature (i.e., refractory or labile substances) of the DOM influence spectral absorption and its resistance to photochemical and biological degradation. CDOM exhibits an absorption spectrum that decreases exponentially with increasing wavelength from UV to the visible light region, thus influencing the spectral distribution and light availability in the water column. Considering that DOM (chromophoric and non-chromophoric) is a variable interactively related to multiple physical-chemical (e.g., hydrological, photo-oxidative) and biological (e.g., microbial degradation) processes, we conclude that it is a potent environmental reference in relational surveys of aquatic systems in general, able to permeate a diagnostic integration in the qualification and characterization of natural waters.

References

Aiken, G., & Cotsaris, E. 1995. Soil and Hydrology: their effect on NOM. Journal American Water Works Association, 87(1), 36--45. DOI: 10.1002/j.1551-8833.1995.tb06299.x

Alkhatib, M., Jennerjahn, T. C., & Samiaji, J. 2007. Biogeochemistry of the Dumai River estuary, Sumatra, Indonesia, a tropical blackwater river. Limnology and Oceanography, 52(6), 2410--2417. DOI: 10.4319/lo.2007.52.6.2410

Amado, A. M., Farjalla, V. F., Esteves, F. A., & Bozelli, R. L. 2003. DOC photo-oxidation in clear water Amazonian aquatic ecosystems. Amazoniana, 17, 513--523.

Amado, A. M., Farjalla, V. F., Esteves, F. A., Bozelli, R. L., Roland, F., & Enrich-Prast, A. 2006. Complementary pathways of dissolved organic carbon removal pathways in clear-water Amazonian ecosystems: photochemical degradation and bacterial uptake. FEMS Microbiology Ecology, 56, 8--17. DOI: 10.1111/j.1574-6941.2006.00028.x

Amaral, J. H. F., Suhett, A. L., Melo, S. & Farjalla, V. F. 2013. Seasonal variation and interaction of photodegradation and microbial metabolism of DOC in black water Amazonian ecosystems. Aquatic Microbial Ecology, 70, 157--168. DOI: 10.3354/ame01651

Amon, R. M. W., & Benner, R. 1996a. Photochemical and microbial consumption of dissolved organic carbon and dissolved oxygen in the Amazon River system. Geochimica et Cosmochimica Acta, 60, 1783--1792. DOI: 10.1016/0016-7037(96)00055-5

Amon, R. M .W., & Benner, R. 1996b. Bacterial utilization of different size classes of dissolved organic matter. Limnology and Oceanography, 41, 41--51. DOI: 10.4319/lo.1996.41.1.0041

Anesio, A. M., Granéli, W., Aiken, G. R., Kieber, D .J., & Mopper, K. 2005. Effect of humic substance photodegradation on bacterial growth and respiration in lake water. Applied and Environmental Microbiology, 71, 6267--6275. DOI: 10.1128/AEM.71.10.6267-6275.2005

Azevedo, J. C. R., Teixeira, M. C., Santos, A. M., Leandrini, J. A., & Pagioro, T. A. 2008. Caracterização espectroscópica da matéria orgânica dissolvida da planície de inundação do alto rio Paraná. Oecologia Brasiliensis, 12(1), 66--77.

Azevedo, W. C. S. 2006. Óptica inerente de cinco sistemas aquáticos continentais da região Norte Fluminense: uma avaliação intersistêmica. Dissertação de Mestrado. UENF, Campos dos Goytacazes, RJ, Brasil. 118p.

Battin, T. J. 1998. Dissolved organic matter and its optical properties in a blackwater tributary of the upper Orinoco river, Venezuela. Organic Geochemistry, 28, 561--569. DOI: 10.1016/S0146-6380(98)00028-X

Begon, M., Townsend, C. R., & Harper, J. L. 2006. Ecology: from individuals to ecosystems. Blackwell Publishing, Oxford. p. 759.

Benner, R., & Kaiser, K. 2011. Biological and photochemical transformations of lignin phenols and amino acids in riverine dissolved organic matter. Biogeochemistry, 102, 209--222. DOI: 10.1007/s10533-010-9435-4

Benner, R., Pakulski, J. D., McCarthy, M., Hedges, J. I., & Hatcher, P. G. 1992. Bulk chemical characterization of dissolved organic matter in the ocean. Science, 255, 1561--1564. DOI: 10.1126 / science.255.5051.1561

Berner, E. K., & Berner, R. A. 1996. Rivers. In: Global Environment: Water, Air and Geochemical cycles. pp. 376. Ed. Prentice Hall, New Jersey.

Bertilsson, S., Carlsson, P., & Graneli, W. 2004. Influence of solar radiation on the availability of dissolved organic matter to bacteria in the Southern Ocean. Deep-Sea Research Part II - Topical Studies in Oceanography, 51, 2557--2568. DOI: 10.1016/j.dsr2.2000.07.001

Borges, M. V. 2011. Transformação óptica da matéria orgânica dissolvida cromófora na interface continente-mar do rio Paraíba do Sul. Dissertação de Mestrado. Departamento de Ecologia e Recursos Naturais da Universidade Estadual do Norte Fluminense. p. 52.

Bro, R. 1997. PARAFAC. Tutorial and applications. Chemometrics Intell. Lab. Syst., 38(2), 149--171. DOI: 10.1016/S0169-7439(97)00032-4

Buffle, J., Zali, O., Zumstein, J., & Vitre, R. 1987. Analytical methods for the direct determination of inorganic and organic species: seasonal changes of iron, sulfur, and pedogenic and aquogenic organic constituents in the eutrophic Lake Bret, Switzerland. Science of the Total Environment, 64, 41--59. DOI: 10.1016/0048-9697(87)90121-5

Calace, N., Capolei, M., Lucchese, M., & Petronio, B. M. 1999. The structural composition of humic compounds as indicator of organic carbon sources. Talanta, 49, 277--284. DOI: 10.1016/S0039-9140(98)00370-1

Chen, J., Gu, B., Leboeuf, E. J., Pan, H., & Dai, S. 2002. Spectroscopic characterization of the structural and functional properties of natural organic matter fractions. Chemosphere, 48, 59--68. DOI: 10.1016/S0045-6535(02)00041-3

Conmy, R. N., Coble, P. G., Chen, R. F., & Gardner, G. B. 2004. Optical properties of colored dissolved organic matter in the Northern Gulf of Mexico. Marine Chemistry, 89, 127--144. DOI: 10.1016/j.marchem.2004.02.010

Conte, P., Spaccini, R., Smejkalová, D., Nebbioso, A., & Piccolo, A. 2007. Spectroscopic and conformational properties of size-fractions separated from a lignite humic acid. Chemosphere, 69, 1032--1039. DOI: 10.1016/j.chemosphere.2007.04.043

Costa, A. C., Passos, E. A., Garcia, C. A. B., & Alves, J. P. H. 2011. Characterization of Dissolved Organic Matter in the Piauí River Estuary, Northeast Brazil. Journal of the Brazilian Chemical Society, 22(11), 2139--2147. DOI: 10.1590/S0103-50532011001100017

Davies, P. M., Bunn, S. E. & Hamilton, S. K. 2008. Primary production in tropical streams and rivers. In: A. Press (Ed.), Tropical Stream Ecology. pp. 23--42. Elsevier, USA. DOI: 10.1016/B978-012088449-0.50004-2

Del Castillo, C. E., Coble, P. G., Morell, J. M., & Corredor, J. E. 1999. Analysis of the optical properties of the Orinoco River plume by absorption and florescence spectroscopy. Marine Chemistry, 66, 35--51. DOI: 10.1016/S0304-4203(99)00023-7

Del Castillo, C. E., & Coble, P. G. 2000. Seasonal variability of the colored dissolved organic matter during the 1994-95 NE and SW monsoons in the Arabian Sea. Deep-Sea Research, 47, 1563--1579. DOI: 10.1016/S0967-0645(99)00154-X

Del Vecchio, R., & Blough, N. V. 2004. On the origin of the optical properties of humic substances. Environmental Science & Technology, 38, 3885--3891. DOI: 10.1021 / es049912h

D'sa, E. J., & Di Marco, S. F. 2009. Seasonal variability and controls on chromophoric dissolved organic matter in a large river-dominated coastal margin. Limnology and Oceanography, 54(6), 2233--2242. DOI: 10.4319/lo.2009.54.6.2233

Ertel, J. R., Hedges, J. I., Devol, A. H., Richey, J. E., & Ribeiro, M. N. G. 1986. Dissolved humic substances of the Amazon River system. Limnology and Oceanography, 31(4), 139--154. DOI: 10.4319/lo.1986.31.4.0739

Esteves, F. A. 1998. Fundamentos da Limnologia. 2ª edição. Editora Interciência, Rio de Janeiro: p. 220.

Farjalla, V. F., Amado, A. M., Suhett, A. L., & Meirelles-Pereira, F. 2009. DOC removal paradigms in highly humic aquatic ecosystems. Environmental Science and Pollution Research, 16, 531--538. DOI: 10.1007/s11356-009-0165-x

Farjalla, V. F., Azevedo, D. A., Esteves, F. A., Bozelli, R. L., Roland, F., & Enrich-Prast, A. 2006. Influence of hydrological pulse on bacterial growth and DOC uptake in a clear-water Amazonian lake. Microbial Ecology, 52, 334--3444. DOI: 10.1007/ s00248-006-9021-4

Farjalla, V. F., Faria, B. M., & Esteves, F. A. 2002. The relationship between DOC and planktonic bacteria in tropical coastal lagoons. Archiv für Hydrobiologie, 156, 97--119. DOI: 10.1127/0003-9136/2002/0156-0097

Fernandes, T. B., Azevedo, W. C. S. & Pedrosa, P. 2008. Sazonalidade Óptica nas Águas do rio Paraíba do Sul (Campos dos Goytacazes, RJ): Referenciais Métricos para o Monitoramento de Águas Naturais. Oecologia Brasiliensis, 12(1), 78--84.

Fichot, C. G., & Benner, R. 2012. The spectral slope coefficient of chromophoric dissolved organic matter (S275-295) as a tracer of terrigenous dissolved organic carbon in river-influenced ocean margins. Limnology Oceanography, 57(5), 1453--1466. DOI: 10.4319/lo.2012.57.5.1453

Geeraert, N., Omengo, F., Borges, A., Govers, G., & Bouillon, S. 2017. Shifts in the carbon dynamics in a tropical lowland river system (Tana River, Kenya) during flooded and non-flooded conditions. Biogeochemistry, 132(1-2), 141--163. DOI: 10.1007/s10533-017-0292-2

Glibert, P. M., Magnien, R., Lomas, M. W., Alexander, J., Fan, C., Haramoto, E., Trice, M., & Kana, T. M. 2001. Harmful algal blooms in the Chesapeake and coastal bays of Maryland, USA: Comparison of 1997, 1998, and 1999 events. Estuaries, 24(6), 875--883. DOI: 10.2307/1353178

Granéli, W., Lindell, M., & Tranvik, L. 1996. Photooxidative production of dissolved inorganic carbon in lakes of different humic content. Limnology and Oceanography, 41, 698--706. DOI: 10.4319/lo.1996.41.4.0698

Grzybowski, W. 2000. Effect of short-term sunlight irradiation on absorbance spectra of chromophoric organic matter dissolved in coastal and riverine water. Chemosphere, 40, 1313--1318. DOI: 10.1016/S0045-6535(99)00266-0

Häder, D. P., Kumar, H. D., Smith, R. C., & Worrest, R. C. 2007. Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochemical & Photobiology Science, 6, 267--285. DOI: 10.1039/B700020K

Hauer, F. R., & Lamberti, G. 2007. Methods in stream ecology. 2a edição. Editora Academic Press: p.896.

Hedges, J. I., Cowie, G. L., Richey, J. E., Quay, P. D., Benner, R., Strom, M., & Forsberg, B. R. 1994. Origins and processing of organic matter in the Amazon River as indicated by carbohydrates and amino acids. Limnology and Oceanography, 39, 743--761. DOI: 10.4319/lo.1994.39.4.0743

Hoge, F. E., Vodacek, A., & Blough, N. V. 1993. Inherent optical properties of the ocean: Retrieval of the absorption coefficient of chromophoric dissolved organic matter from fluorescence measurements. Limnology and Oceanography, 38(7), 1394--1402. DOI: 10.4319/lo.1993.38.7.1394

Huang, W. & Chen, R. F. 2009. Sources and transformations of chromophoric dissolved organic matter in the Neponset River Watershed. Journal of Geophysical Research, 114, 1--14. DOI: 10.1029/2009JG000976

Hudson, N., Baker, A., & Reynolds, D. 2007. Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters - A review. River Research and Applications, 23, 631--649. DOI: 10.1002/rra.1005

Jaffé, R., McKnight, D., Maie, N., Cory, R., McDowell, W. H., & Campbell, J. L. 2008. Spatial and temporal variations in DOM composition in ecosystems: The importance of longâ€term monitoring of optical properties. Journal of Geophysical Research, 113, 1--15. DOI: 10.1029/2008JG000683

Kim, S., Kaplan, L. A., & Hatcher, P. G. 2006. Biodegradable dissolved organic matter in a temperate and a tropical stream determined from ultra-high resolution mass spectrometry. Limnology and Oceanography, 51(2), 1054--1063. DOI: 10.4319/lo.2006.51.2.1054

Kirk, J. T O. 1994. Light & Photosynthesis in Aquatics Ecosytems (Second Edition). Cambridge University Press: p. 413.

Kowalczuk, P., Cooper, W. J., Whitehead, R. F., Durako, M. J., & Sheldon, W. 2003. Characterization of CDOM in an organic-rich river and surrounding coastal ocean in the South Atlantic Bight. Aquatic Sciences, 65, 384--401. DOI: 10.1007/s00027-003-0678-1

Krüger, G. C. T., Caralho, C. E. V., Ferreira, A. G., Gonçalves, E. G., Truccolo, E. C., & Schettini, C. A. F. 2003. Dinâmica do carbono orgânico dissolvido no estuário do rio Paraíba do Sul, RJ, sob diferentes condições de maré e descarga fluvial. Atlântica, 25(1), 27--33.

Krusche, A. V., Martinelli, L. A., Victoria, R. L., Bernardes, M., Camargo, P. B., Ballester, M. V., & Trumbore, S. E. 2002. Composition of particulate and dissolved organic matter in a disturbed watershed of southeast Brazil (Piracicaba River basin). Water Research, 36, 2743--2752. DOI: 10.1016/S0043-1354(01)00495-X

Kutser, T., Pierson, D. C., Kallio, K. Y., Reinart, A., & Sobek, S. 2005. Mapping lake CDOM by satellite remote sensing. Remote Sensing of Environmen, 94, 535--540. DOI: 10.1016/j.rse.2004.11.009

Lambert, T., Bouillon, S., Darchambeau, F., Massicotte, P., & Borges, A. 2016b. Shift in the chemical composition of dissolved organic matter in the Congo River network. Biogeosciences, 13(18), 5405--5420. DOI: 10.5194/bg-13-5405-2016

Lambert, T., Teodoru, C. R., Nyoni, F. C., Bouillon, S., Darchambeau, F., Massicotte, P., & Borges, A. V. 2016a. Along-stream transport and transformation of dissolved organic matterin a large tropical river. Biogeosciences, 13(9), 2727--2741. DOI: 10.5194/bg-13-2727-2016

Leenheer, J. A., & Croué, J. P. 2003. Characterising aquatic dissolved organic matter. Environmental Science and Technology, 37, 18--26. DOI: 10.1021/es032333c

Lennon, J. T., & Pfaff, L. E. 2005. Source and supply of terrestrial organic matter affects aquatic microbial metabolism. Aquatic Microbial Ecology, 39, 107--119. DOI: 10.3354 / ame039107

Lindell, M. J., Graneli, W., & Tranvik, L. J. 1995. Enhanced bacterialgrowth in response to photochemical transformation of dissolved organic-matter. Limnology and Oceanography, 40, 195--199. DOI: 10.4319/lo.1995.40.1.0195

Lisboa, L. K., Thomas, S., & Moulton, T. P. 2016. Reviewing carbon spiraling approach to understand organic matter movement and transformation in lotic ecosystems. Acta Limnologica Brasiliensia, 28(e14), 1--10. DOI: 10.1590/S2179-975X2116

Lobbes, J. M., Fitznar, H. P., & Kattner, G. 2000. Biogeochemical characteristics of dissolved and particulate organic matter in Russian rivers entering the Arctic Ocean. Geochimica et Cosmochimica Acta, 64(17), 2973--2983. DOI: 10.1016/S0016-7037(00)00409-9

McCallister, S. L., Bauer, J. E., Kelly, J., & Ducklow, H. W. 2005. Effects of sunlight on decomposition of estuarine dissolved organic C, N and P and bacterial metabolism. Aquatic Microbial Ecology, 40, 25--35. DOI: 10.3354 / ame040025

McClain, M. E., Richey, J .E., & Brandes, J. A. 1997. Dissolved organic matter and terrestrial-lotic linkages in the central Amazon basin of Brazil. Global Biogeochemical cycles, 11(3), 295--311. DOI: 10.1029/97GB01056

Meybeck, M. 1982. Carbon, nitrogen, and phosphorus transport by world rivers. American Journal Science, 282, 401--450. DOI: 10.2475 / ajs.282.4.401

Miller, W. L., & Moran, M. A. 1997. Interaction of photochemical and microbial processes in the degradation of refractory dissolved organic matter from a coastal marine environment. Limnology and Oceanography, 42, 1317--1324. DOI: 10.4319/lo.1997.42.6.1317

Moran, N. A., & Wernegreen, J. J. 2000. Lifestyle evolution in symbiotic bacteria: insights from genomics. Tree, 15(8), 321--326. DOI: 10.1016/S0169-5347(00)01902-9

Müller-Niklas, G., Heissenberger, A., Puskaric, S., & Herndl, G. J. 1995. Ultraviolet-B radiation and bacterial metabolism in coastal waters. Aquatic Microbial Ecology, 9, 111--116. DOI: 10.3354/ame009111

Murphy, E. M., & Zachara, J. M. 1995. The role of sorbed humic substances on the distribution of organic and inorganic contaminants in groundwater. Geoderma, 67, 103--124. DOI: 10.1016/0016-7061(94)00055-F

Neal, C., & Jarvie, H. P. 2005. Agriculture, community, river eutrophication and the Water Framework Directive. Hydrological Processes, 19, 1895--1901. DOI: 10.1002/hyp.5903

Osburn, C. L., Zagarese, H. E., Morris, D. P., Hargreaves, B. R., & Cravero, W. E. 2001. Calculation of spectral weighting functions for the solar photobleaching of chromophoric dissolved organic matter in temperate lakes. Limnology and oceanography, 46(6), 1455--1467. DOI: 10.4319/lo.2001.46.6.1455

Painel Intergovernamental sobre Mudanças (IPCC). 2014. Climate Change 2014: Synthesis Report. Contribuição dos Grupos de Trabalho I, II e III para o Quinto Relatório de Avaliação do Painel Intergovernamental sobre Mudanças Climáticas. p.151, Genebra, Suíça.

Pedrosa, P., Benevides, T., Suzuki, M. S. & Rezende, C. E. 2017. Matéria orgânica dissolvida cromófora. In: A. P. C. Falcão, ALR. Wagener, RS. Carreira (Eds.), Química ambiental: caracterização ambiental regional da Bacia de Campos, Atlântico Sudoeste. pp. 95-123. Rio de Janeiro: Elsevier. Habitats. DOI: 10.1016/B978-85-352-7563-6.50012-0

Pedrosa, P. 2007. Optical resilience of the Paraiba do Sul River (Brazil) during a toxic spill of a wood-pulping factory: the Cataguazes accident. Environmental Monitoring and Assessment, 129, 137--150. DOI: 10.1007/s10661-006-9348-9

Pérez, M. A. P., Moreira-Turcq, P., Gallard, H.; Allard, T., & Benedetti, M. F. 2011. Dissolved organic matter dynamic in the Amazon basin: Sorption by mineral surfaces. Chemical Geology, 286, 158--168. DOI: 10.1016/j.chemgeo.2011.05.004

Portal Periódicos Capes: <http://www.periodicos.capes.gov.br/index.php> Acesso em 15/07/2018.

Remington, S., Krusche, A., & Richey, J. 2011. Effects of DOM photochemistry on bacterial metabolism and CO2 evasion during falling water in a humic and a whitewater river in the Brazilian Amazon. Biogeochemistry, 105, 185--200. DOI: 10.1007/s10533-010-9565-8

Repeta, D. J., Quan, T. M., Aluwihare, L. I., & Accardi, A. M. 2002. Chemical characterization of high molecular weight dissolved organic matter in fresh and marine Waters. Geochimica et Cosmochimica Acta, 66(6), 955--962. DOI: 10.1016/S0016-7037(01)00830-4

Rodríguez-Zúñiga, U. F., Milori, D. M. B. P., Silva, W. T. L., Martin-Neto, L., Oliveira, L. C. & Rocha, J. C. 2008. Changes in Optical Properties Caused by UV-Irradiation of Aquatic Humic Substances from the Amazon River Basin: Seasonal Variability Evaluation. Environmental Science & Technology, 42(6): 1948--1953. DOI: 10.1021 / es702156n

Salimon, C., Sousa, E. S., Alin, S. R., Krusche, A. V., & Ballester, M. V. 2012. Seasonal variation in dissolved carbon concentrations and fluxes in the upper Purus River, southwestern Amazon. Biogeochemistry, 114(3), 245--254. DOI: 10.1007/s10533-012-9806-0

Sargentini Junior, E., Rocha, J. C., Rosa, A. H., & Zara, L. F. 2001. Substâncias húmicas aquáticas: fracionamento molecular e caracterização de rearranjos internos após complexação com íons metálicos. Quimíca Nova, 24(3), 339--344.

Seidel, M., Dittmar, T., Ward, N., Krusche, A., Richey, J., Yager, P., & Medeiros, P. 2016. Seasonal and spatial variability of dissolved organic matter composition in the lower Amazon River. Biogeochemistry, 131(3), 281--302. DOI: 10.1007/s10533-016-0279-4

Seitzinger, S. P., & Sanders, R. W. 1997. Contribution of dissolved organic nitrogen from rivers to estuarine eutrophication. Marine Ecology Progress Series, 159, 1--12. DOI: 10.3354 / meps159001

Seitzinger, S. P., Sanders, R. W., & Styles, R. 2002. Bioavailability of DON from natural and anthropogenic sources to estuarine plankton. Limnology and Oceanography, 47, 353--366. DOI: 10.4319/lo.2002.47.2.0353

Silva, M. L., Silva, A. C., Silva, B. P. C., Barral, U. M., Soares, P. G. S. & Torrado, P. V. 2013. Surface mapping, organic matter and water stocks in peatlands of the Serra do Espinhaço Meridional - Brazil, R. Bras. Ci. Solo, 37, 1149--1157. DOI: 10.1590/S0100-06832013000500004

Smith, E. M., & Benner, R. 2005. Photochemical transformations of riverine dissolved organic matter: effects on estuarine bacterial metabolism and nutrient demand. Aquatic Microbial Ecology, 40, 37--50. DOI: 10.3354 / ame040037

Sobek, S., Tranvik, L. J., Prairie, Y. T., Kortelainen, P., & Cole, J. J. 2007. Patterns and regulation of dissolved organic carbon: An analysis of 7500 widely distributed lakes. Limnology and Oceanographic, 52(3), 1208--1219. DOI: 10.4319/lo.2007.52.3.1208

Spencer, R. G. M., Hernes, P. J., Aufdenkampe, A. K., Baker, A., Gulliver, P., Stubbins, A., Aiken, G. R., Dyda, R. Y., Butler, K. D., Mwambai, V. L., Mangangui, A. M., Wabakanghanzii, J. N., & Six, J. 2012. An initial investigation into the organic matter biogeochemistry of the Congo River. Geochimica et Cosmochimica Acta, 84, 614--627. DOI: 10.1016/j.gca.2012.01.013

Stedmon, C. A., & Bro, R. 2008. Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnology and Oceanography: Methods, 6(11) 572--579. DOI: 0.4319/lom.2008.6.572

Stedmon, C. A., & Nelson, N. B. 2015. The Optical Properties of DOM in the Ocean. In: Carlson DAHA, editor. Biogeochemistry of Marine Dissolved Organic Matter (Second Edition). pp. 481-508. Boston: Academic Press. DOI: 10.1016/B978-0-12-405940-5.00010-8

Stedmon, C. A., Markager, S., & Bro, R. 2003. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Marine Chemistry, 82, 239--254. DOI: 10.1016/S0304-4203(03)00072-0

Stedmon, C. A., Markager, S., & Kaas, H. 2000. Optical properties and signatures of Chromophoric Dissolved Organic Matter (CDOM) in Danish coastal waters. Estuarine, Coastal and Shelf Science, 51, 267--278. DOI: 10.1006/ecss.2000.0645

Stedmon, C. A., & Markager, S. 2001. The optics of chromophoric dissolved organic matter (CDOM) in the Greenland Sea: An algorithm for differentiation between marine and terrestrially derived organic matter. Limnology Oceanography, 46(8), 2087--2093. DOI: 10.4319/lo.2001.46.8.2087

Stubbins, A., Spencer, R. G. M., Chen, H., Hatcher, P. G., Mopper, K., Hernes, P. J., Mwamba, V. L., Mangangu, A. M., Wabakanghanzi, J. N., & Six, J. 2010. Illuminated darkness: Molecular signatures of Congo River dissolved organic matter and its photochemical alteration as revealed by ultrahigh precision mass spectrometry. Limnology Oceanography, 55, 1467--1477. DOI: 10.4319/lo.2010.55.4.1467

Suhett, A. L., Amado, A. M., Bozelli, R. L., Esteves, F. A., & Farjalla, V. F. 2006. O papel da foto-degradação do carbono orgânico dissolvido (COD) nos ecossistemas aquáticos. Oecologia Brasiliensis, 10(2), 186--204. DOI: 10.4257/oeco.2006.1002.06

Tao, S. 1998. Spatial and temporal variation in DOC in the Yichun River, China. Water Research, 32, 2205--2210. DOI: 10.1016/S0043-1354(97)00443-0

Teixeira, M. C., Azevedo, J. C. R., & Pagioro, T. A. 2011. Spatial and seasonal distribution of chromophoric dissolved organic matter in the Upper Paraná River floodplain environments (Brazil). Acta Limnológica Brasiliensia, 23(4), 333--343. DOI: 10.1590/S2179-975X2012005000011

Teixeira, M. C., Santana, N. F., Azevedo, J. C. R., & Pagioro, T. A. 2008. Padrões de variação do carbono orgânico na planície de inundação do Alto rio Paraná. Oecologia Brasiliensis, 12(1), 57--65.

Thorp, J. H., Thoms, M. C. & Delong, M. D. 2010. The riverine ecosystem synthesis: toward conceptual cohesiveness in river science. Elsevier: p. 232.

Thurman, E. M. 1985. Organic geochemistry of natural waters. In: E. M. Thurman, Amino Acids. pp. 151-180. United States: United States Geological Survey, Denver, USA.

Valerio, A. M., Kampel, M., Vantrepotte, V., Ward, N. D., Sawakuchi, H. O., Less, D. F. S., Neu, V., Cunha, A. & Richey, J. 2018. Using CDOM Optical Properties for Estimating DOC Concentrations and PCO2 in the Lower Amazon River. Optics Express, 26(14), 657--677. DOI: 10.1364/OE.26.00A657

Vitousek, P. M., Mooney, H. A., Lubchenco, J., & Melillo, J. M. 1997. Human domination of Earth's ecosystems. Science, 277, 494--499. DOI: 10.1126/science.277.5325.494

Vodacek, A., Blough, N.V., Degrandpre, M. D., Peltzer, E. T., & Nelson, R. K. 1997. Seasonal variation of CDOM and DOC in the Middle Atlantic Bight: Terrestrial inputs and photooxidation. Limnology and Oceanography, 42(4), 674--686. DOI: 0.4319/lo.1997.42.4.0674

Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R., & Mopper, K. 2003. Evaluation of Specific Ultraviolet Absorbance as an Indicator of the Chemical Composition and Reactivity of Dissolved Organic Carbon. Environmental Science Technology, 37, 4702--4708. DOI: 10.1021/es030360x

Westerhoffa, P., & Anningb, D. 2000. Concentrations and characteristics of organic carbon in surface water in Arizona: influence of urbanization. Journal of Hydrology, 236, 202--222. DOI: 10.1016/S0022-1694(00)00292-4

Wetzel, R. G. 1992. Gradient-Dominated Ecosystems -- Sources and Regulatory Functions of Dissolved Organic-Matter in Fresh-Water Ecosystems. Hydrobiologia, 229, 181--198. DOI: 10.1007/ BF00007000

Wetzel, R. G., Hatcher, P. G., & Bianchi, T .S. 1995. Natural photolysis by ultraviolet irradiance of recalcitrant dissolved organic matter to simple substrates for rapid bacterial metabolism. Limnology and Oceanography, 40(8), 1369--1380. DOI: 10.4319/lo.1995.40.8.1369

Wiegner, T. N., & Seitzinger, S. P. 2001. Photochemical and microbial degradation of external dissolved organic matter inputs to rivers. Aquatic Microbiology Ecology, 24, 27--40. DOI: 10.4319/lo.1995.40.8.1369

Wiegner, T. N., Tubal, R. L., & Mackenziec, R. A. 2009. Bioavailability and export of dissolved organic matter from a tropical river during base- and stormflow conditions. Limnology and Oceanography, 54(4), 1233--1242. DOI: 10.4319/lo.2009.54.4.1233

Williamson, C. E., Morris, D. P., Pace, M. L., & Olson, O. G. 1999. Dissolved organic carbon and nutrients as regulators of lake ecosystems: Resurrection of a more integrated paradigm. Limnology and Oceanography, 44, 795--803. DOI: 10.4319/lo.1999.44.3_part_2.0795

Wünsch, U. J., Stedmon, C. A., Tranvik, L. J. & Guillemette, F. 2017. Unraveling the sizeâ€dependent optical properties of dissolved organic matter. Limnology and Oceanography, 63(2), 588--601. DOI: 10.1002/lno.10651

Yang, L., Hong, H., Guo, W., Huang, J., Li, Q., & Yu, X. 2012. Effects of changing land use on dissolved organic matter in a subtropical river watershed, southeast China. Regional Environmental Change, 12, 145--151. DOI: 10.1007/s10113-011-0250-9

Zanardi-Lamardo, E., Moore, C. A., & Zika, R. G. 2004. Seasonal variation in molecular mass and optical properties of chromophoric dissolved organic material in coastal waters of southwest Florida. Marine Chemistry, 89, 37--54. DOI: 10.1016/j.marchem.2004.02.018

Zumstein, J., & Buffle, J. 1989. Circulation of pedogenic and aquagenic organic matter in an eutrophic lake. Water Research, 23(2), 229--239. DOI: 10.1016/0043-1354(89)90047-X

Published

2019-03-14