EFFECTS OF PHENOL ON Astyanax bifasciatus AND Daphnia magna
DOI:
https://doi.org/10.4257/oeco.2020.2403.05Keywords:
aromatic compounds, ecotoxicology, micronucleus assay, mortality, pollutionAbstract
In the present study, we investigated the possible toxic effects of phenol on two bioindicators: the fish Astyanax bifasciatus (Characiformes; Characidae) and the crustacean Daphnia magna (Cladocera; Daphnidae). We performed bioassays with A. bifasciatus (96 h and 15 days of exposure) and D. magna (48 and 96 h of exposure). The bioindicator organisms were exposed to the following concentrations of phenol: 0.003 mg L-1, 0.01 mg L-1, 0.03 mg L-1, 0.06 mg L-1, and 0.1 mg L-1; and the control group was maintained in clear water. We assessed the rate of micronuclei in erythrocytes of fish and evaluated the immobility of D. magna at each concentration of the contaminant. For fish, the 15-day exposure revealed a significant difference between the tested groups (p = 0.0002), showing a tendency for micronuclei to increase at the highest concentrations. For the D. magna test, 96-hour toxicity was evident at all tested concentrations (p < 0.05). A better response of these organisms was observed during the longer exposure period, emphasizing the concern on the long-term effects of phenol. Effects on the lowest concentration of phenol tested (0.003 mg L-1) were also observed, and this concentration is permitted by the Brazilian Legislation for Class II waters, demonstrating that the longer time of exposure to phenol can cause damage to the biota.
References
ABNT - Associação Brasileira de normas Técnicas. 2016. Ecotoxicologia aquática - Toxicidade aguda - Método de ensaio com Daphnia spp. (Crustacea, Cladocera).
Adelman, I. R., Smith, J. R., Lloyd, L., & Siesennop, G. D. 1976. Acute toxicity of sodium chloride, pentachlorophenol, Guthion®, and hexavalent chromium to fathead minnows (Pimephales promelas) and goldfish (Carassius auratus). Journal of the Fisheries Board of Canada, 33(2), 203-208. DOI: 10.1139/f76-030
Ahel, M., McEvoy, J., & Giger, W. 1993. Bioaccumulation of the lipophilic metabolites of nonionic surfactants in freshwater organisms. Environmental Pollution, 79(3), 243-248. DOI: 10.1016/0269-7491(93)90096-7
Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., &Walter, P. 2002. Biologia molecular da célula. 3. ed. Porto Alegre: Artmed: p. 800.
Arambasic, M. B., Bjelic, S., &Subakov, G. 1995. Acute toxicity of heavy metals, phenol and sodium on Allium cepa, Lepidium sativum and Daphnia magna: comparative investigations and the practical applications. Water Research, 29(2), 497-503. DOI: 10.1016/0043-1354(94)00178-A
ATSDR. 2008. Toxicological profile for phenol. Georgia: Agency for Toxic Substances and Disease Registry: p. 9.
Ayllon, F., & Garcia-Vazquez, E. 2000. Induction of micronuclei and other nuclear abnormalities in European minnow Phoxinus phoxinus and mollie Poecilia latipinna: an assessment of the fish micronucleus test. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 467(2), 177-186. DOI: 10.1016/S1383-5718(00)00033-4
Barber, J. T., Sharma, H. A., Ensley, H. E., Polito, M. A., & Thomas, D. A. 1995. Detoxification of phenol by the aquatic angiosperm, Lemna gibba. Chemosphere, 31(6), 3567-3574. DOI: 10.1016/0045-6535(95)00205-M
Baršienė, J., Butrimavičienė, L., Michailovas, A., & Grygiel, W. 2015. Assessing the environmental genotoxicity risk in the Baltic Sea: frequencies of nuclear buds in blood erythrocytes of three native fish species. Environmental Monitoring and Assessment, 187(1), 4078. DOI: 10.1007/s10661-014-4078-x
Baumgartner, G., Pavanelli, C. S., Baumgartner, D., Bifi, A. G.; Debona, T., & Frana, V. A. 2012. Peixes do baixo rio Iguaçu. Maringá: EDUEM: p. 76.
Bolognesi, C., Perrone, E., Roggieri, P., Pampanin, D. M., & Sciutto, A. 2006. Assessment of micronuclei induction in peripheral erythrocytes of fish exposed to xenobiotics under controlled conditions. Aquatic Toxicology, 78, S93-S98. DOI: 10.1016/j.aquatox.2006.02.015
Braham, R. P., Blazer, V. S., Shaw, C. H., & Mazik, P. M. 2017. Micronuclei and other erythrocyte nuclear abnormalities in fishes from the Great Lakes Basin, USA. Environmental and Molecular Mutagenesis, 58(8), 570-581. DOI: 10.1002/em.22123
Bueno-Krawczyk, A. C. D., Guiloski, I. C., Piancini, L. D. S., Azevedo, J. C., Ramsdorf, W. A., Ide, A. H., Guimarães, A. T. B., Cestari, M. M., & Assis, H. S. 2015. Multibiomarker in fish to evaluate a river used to water public supply. Chemosphere, 135(2015), 257-264. DOI: 10.1016/j.chemosphere.2015.04.064
Buccafusco, R. J., Ells, S. J., & Leblanc, G. A. 1981. Acute toxicity of priority pollutants to bluegill (Lepomis macrochirus). Bulletin of Environmental Contamination and Toxicology, 26(1), 446-452. DOI: 10.1007/BF01622118
Carneiro, C., Andreoli, C. V., Cunha, C. D. L. N., & Gobbi, E. F. 2014. Reservoir eutrophication: Preventive management. London: IWA Publishing: p. 307.
Carrasco, K. R., Tilbury, K. L., & Myers, M. S. 1990. Assessment of the piscine micronucleus test as an in situ biological indicator of chemical contaminant effects. Canadian Journal of Fisheries and Aquatic Sciences, 47(11), 2123-2136. DOI: 10.1139/f90-237
Colonetti, J. 2013. Avaliação da toxidade do carbaril, carbofuran e fenol utilizando Daphnia magna como bioindicador. Trabalho de Conclusão de Curso. Curso Engenharia Ambiental da Universidade do Extremo Sul Catarinense. p. 60.
CONAMA 2011. Resolução nº 430, de 13 de maio de 2011. Dispõe sobre as condições e padrões de lançamento de efluentes, complementa e altera a Resolução nº 357, de 17 de março de 2005, do Conselho Nacional do Meio Ambiente-CONAMA.
Dauble, D. D., Barraclough, S. A., Bean, R. M., & Fallon, W. E. 1983. Chronic effects of coal liquid dispersions on fathead minnows and rainbow trout. Transactions of the American Fisheries Society, 112(5), 712-719. DOI: 10.1577/1548-8659(1983)112<712:CEOCDO>2.0.CO;2
Duan, W., Meng, F., Cui, H., Lin, Y., Wang, G., & Wu, J. 2018. Ecotoxicity of phenol and cresols to aquatic organisms: a review. Ecotoxicology and Environmental Safety, 157, 441-456. DOI: 10.1016/j.ecoenv.2018.03.089
Erbe, M. C. L., Ramsdorf, W. A., Vicari, T., & Cestari, M. M. 2011. Toxicity evaluation of water samples collected near a hospital waste landfill through bioassays of genotoxicity piscine micronucleus test and comet assay in fish Astyanax and ecotoxicity Vibrio fischeri and Daphnia magna. Ecotoxicology, 20(2), 320-328. DOI: 10.1007/s10646-010-0581-1
Flora, S., Vigano, L., D'agostini, F., Camoirano, A., Bagnasco, M., Bennicelli, C., Melodia, A., &Arillo, A. 1993. Multiple genotoxicity biomarkers in fish exposed in situ to polluted river water. Mutation Research/Genetic Toxicology, 319(3), 167-177. DOI: 10.1016/0165-1218(93)90076-P
Flora, S., Bagnasco, M., & Zanacchi, P. 1991. Genotoxic, carcinogenic, and teratogenic hazards in the marine environment, with special reference to the Mediterranean Sea. Mutation Research/Reviews in Genetic Toxicology, 258(3), 285-320. DOI: 10.1016/0165-1110(91)90013-L
Grisolia, C. K., & Starling, F. L. 2001. Micronuclei monitoring of fishes from Lake Paranoá, under influence of sewage treatment plant discharges. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 491(1-2), 39-44. DOI: 10.1016/S1383-5718(00)00168-6
Heddle, J. A. 1973. A rapid in vivo test for chromosomal damage. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 18(2), 187-190. DOI: 10.1016/0027-5107(73)90035-3
Hickey, J. P., Batterman, S. A., &Chernyak, S. M. 2006. Trends of chlorinated organic contaminants in Great Lakes trout and walleye from 1970 to 1998. Archives of Environmental Contamination and Toxicology, 50(1), 97-110. DOI: 10.1007/s00244-005-1007-6
Holcombe, G. W., Phipps, G. L., & Fiandt, J. T. 1982. Effects of phenol, 2, 4-dimethylphenol, 2, 4-dichlorophenol, and pentachlorophenol on embryo, larval, and early-juvenile fathead minnows (Pimephales promelas). Archives of Environmental Contamination and Toxicology, 11(1), 73-78.
Holmberg, B. O., Jensen, S., Larsson, Å., Lewander, K., & Olsson, M. (1972). Metabolic effects of technical pentachlorophenol (PCP) on the eel Anguilla anguilla L. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 43(1), 171-183. DOI: 10.1016/0305-0491(72)90214-3
Hori, T. S. F., Avilez, I. M., Inoue, L. K., & Moraes, G. 2006. Metabolical changes induced by chronic phenol exposure in matrinxã Brycon cephalus (teleostei: characidae) juveniles. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 143(1), 67-72. DOI: 10.1016/j.cbpc.2005.12.004
Huang, Z. Z., Wang, P., Li, H., Lin, K. F., Lu, Z. Y., Guo, X. J., & Liu, Y. D. 2014. Community analysis and metabolic pathway of halophilic bacteria for phenol degradation in saline environment. International Biodeterioration and Biodegradation, 94, 115-120. DOI: 10.1016/j.ibiod.2014.07.003
Iarmarcovai, G., Bonassi, S., Botta, A., Baan, R. A., & Orsiere, T. 2008. Genetic polymorphisms and micronucleus formation: a review of the literature. Mutation Research/Reviews in Mutation Research, 658(3), 215-233. DOI: 10.1016/j.mrrev.2007.10.001
Igbinosa, E. O., Odjadjare, E. E., Chigor, V. N., Igbinosa, I. H., Emoghene, A. O., Ekhaise, F. O., & Idemudia, O. G. 2013. Toxicological profile of chlorophenols and their derivatives in the environment: the public health perspective. The Scientific World Journal, article ID 460215, 2013, 1-11. DOI: 10.1155/2013/460215
Jiang, Y., Wen, J., Bai, J., Jia, X., & Hu, Z. 2007. Biodegradation of phenol at high initial concentration by Alcaligenes faecalis. Journal of Hazardous Materials, 147(1), 672-676. DOI: 10.1016/j.jhazmat.2007.05.031
Kenaga, E. E. 1982. Predictability of chronic toxicity from acute toxicity of chemicals in fish and aquatic invertebrates. Environmental Toxicology and Chemistry, 1(4), 347-358. DOI: 10.1002/etc.5620010410
Knie, J. L. W., & Lopes, E. W. B. 2004. Testes toxicológicos: Métodos, técnicas e aplicações. Florianópolis: FATMA/GTZ: p. 289.
Kosera, V. S. 2014. Determinação de fenóis através do método espectrofotométrico direto em amostras de água do rio Iguaçu. Trabalho de conclusão de curso (Licenciatura plena em Química) – Universidade Estadual do Paraná, União da Vitória.
Kumar, K. S., & Han, T. 2010. Physiological response of Lemna species to herbicides and its probable use in toxicity testing. Toxicology and Environmental Health Sciences, 2(1), 39-49. DOI: 10.1007/BF03216512
Kumar, V., & Mukherjee, D. 1988. Phenol and sulfide induced changes in the ovary and liver of sexually maturing common carp, Cyprinus carpio. Aquatic toxicology, 13(1), 53-59. DOI: 10.1016/0166-445X(88)90072-0
Lari, E., Wiseman, S., Mohaddes, E., Morandi, G., Alharbi, H., & Pyle, G. G. 2016. Determining the effect of oil sands process-affected water on grazing behaviour of Daphnia magna, long-term consequences, and mechanism. Chemosphere, 146(1), 362-370. DOI: 10.1016/j.chemosphere.2015.12.037
Lee, R. F., & Steinert, S. 2003. Use of the single cell gel electrophoresis/comet assay for detecting DNA damage in aquatic (marine and freshwater) animals. Mutation Research/Reviews in Mutation Research, 544(1), 43-64. DOI: 10.1016/S1383-5742(03)00017-6
Liao, H., Sarver, E., & Krometis, L. H. 2018. Interactive effects of water quality, physical habitat, and watershed anthropogenic activities on stream ecosystem health. Water Research, 130(1), 69-78. DOI: 10.1016/j.watres.2017.11.065
Maleki, A., Mahvi, A. H., Vaezi, F., & Nabizadeh, K. 2005. Ultrasonic degradation of phenol and determination of the oxidation by-products toxicity. Journal of Environmental Health Science & Engineering, 2(3), 201-206.
Malmqvist, B., & Rundle, S. 2002. Threats to the running water ecosystems of the world. Environmetal Conservation, 29(2), 134-153. DOI: 10.1017/S0376892902000097
Melo-Silva, M., Oliveira, F. R., Rosa, J., Gemelli, E., Santos, L., & Bueno-Krawczyk, A. C. D. 2018. Comparison of nuclear abnormalities in Astyanax bifasciatus Cuvier, 1819 (Teleostei: Characidae) of two sections of rivers from the middle Iguaçu. Acta Scientiarum. Biological Sciences, 40, e40669. DOI: 10.4025/actascibiolsci.v40i1.40669
Michałowicz, J., & Duda, W. 2007. Phenols-sources and toxicity. Polish Journal of Environmental Studies, 16(3) 347-362.
Mukherjee, D. I. L. I. P., Bhattacharya, S. H. E. L. L. E. Y., Kumar, V. I. N. O. D., & Moitra, J. A. I. D. E. E. P. 1990. Biological significance of [14C] phenol accumulation in different organs of a murrel, Channa punctatus, and the common carp, Cyprinus carpio. Biomedical and Environmental Sciences: BES, 3(3), 337-342.
Park, S. Y., & Choi, J. 2007. Cytotoxicity, genotoxicity and ecotoxicity assay using human cell and environmental species for the screening of the risk from pollutant exposure. Environment International, 33(6), 817-822. DOI: 10.1016/j.envint.2007.03.014
Peltier, W. 1978. Methods for measuring the acute toxicity of effluents to aquatic organisms. Cincinnati, OH: Environmental Protection Agency, Office of Research and Development, Environmental Monitoring and Support Laboratory: p. 197.
Prpich, G. P., & Daugulis, A. J. 2005. Enhanced biodegradation of phenol by a microbial consortium in a solid–liquid two phase partitioning bioreactor. Biodegradation, 16(4), 329-339. DOI: 10.1007/s10532-004-2036-y
Roche, H., & Bogé, G. 2000. In vivo effects of phenolic compounds on blood parameters of a marine fish (Dicentrarchus labrax). Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 125(3), 345-353. DOI: 10.1016/S0742-8413(99)00119-X
Schüürmann, G., Segner, H., & Jung, K. 1997. Multivariate mode-of-action analysis of acute toxicity of phenols. Aquatic Toxicology, 38(4), 277-296. DOI: 10.1016/S0166-445X(96)00842-9
Schmid, W. 1975. The micronucleus test. Mutation Research/Environmental Mutagenesis and Related Subjects, 31(1), 9-15. DOI: 10.1016/0165-1161(75)90058-8
Statsoft Inc. 2005. Statistica: data analysis software system. Version 7.1. Palo Alto: TIBCO Software Inc.
Surkatti, R., & El-Naas, M. H. 2017. Competitive interference during the biodegradation of cresols. International Journal of Environmental Science and Technology, 15(2), 301-308. DOI: 10.1007/s13762-017-1383-2
Teixeira, R. M. C. 2015. Determinação de fenol em amostras de água da torneira e estudo da estabilidade de uma solução de fenol. Trabalho de Conclusão de Curso (Licenciatura plena em Química) da Universidade Estadual do Paraná, União da Vitória.
Tsutsui, T., Hayashi, N., Maizumi, H., Huff, J., & Barrett, J. C. 1997. Benzene-, catechol-, hydroquinone-and phenol-induced cell transformation, gene mutations, chromosome aberrations, aneuploidy, sister chromatid exchanges and unscheduled DNA synthesis in Syrian hamster embryo cells. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 373(1), 113-123. DOI: 10.1016/S0027-5107(96)00196-0
Vaz, S. Silva, S., Dias, A. H. C., Dutra, E. S., Pavanin, A. L., Morelli, S., & Pereira, B. B. 2016. The impact of water pollution on fish species in southeast region of Goiás, Brazil. Journal of Toxicology and Environmental Health - Part A, 79(1), 8-16. DOI: 10.1080/15287394.2015.1099484
Viganò, L., Camoirano, A., Izzotti, A., D’Agostini, F., Polesello, S., Francisci, C., & Flora, S. 2002. Mutagenicity of sediments along the Po River and genotoxicity biomarkers in fish from polluted areas. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 515(1-2), 125-134. DOI: 10.1016/S1383-5718(02)00002-5
US EPA - U.S Environmental Protection Agency. 2002. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms. Washington, USA.
Yin, D., Gu, Y., Li, Y., Wang, X., & Zhao, Q. 2006. Pentachlorophenol treatment in vivo elevates point mutation rate in zebrafish p53 gene. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 609(1), 92-101. DOI: 10.1016/j.mrgentox.2006.06.025
Zagatto, P. A. 2008. Ecotoxicologia. In: P. A. Zagatto, & E. Bertoletti (Eds.), Ecotoxicologia aquática – Princípios e aplicações. pp. 1-13. São Carlos, Brasil: Rima.